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1. Classical system of N particles in R3

.
Consider a mechanical system consisting of N particles in R3 subject to some forces. Let xi ∈ R3 denote

the position vector of the ith particle. Then all possible positions of the system are described by N -tuples
(x1, . . . , xN ) ∈ (R3)N . The space (R3)N is an example of a configuration space. The time evolution of
the system is described by a curve (x1(t), . . . , xN (t)) in (R3)N and is governed by Newton’s second law:

mi
d2xi
dt2

= Fi(x1, . . . , xN , ẋ1, . . . , ẋN , t)

Here

• Fi denotes the force on ith particle (which depends on the positions and velocities of all N particles
and on time),

• ẋi = dxi
dt , and

• mi denotes the mass of the ith particle.

We now re-lable the variables. Let q3i, q3i+1, q3i+2 be respectively the first, the second and the third coordi-
nate of the vector xi, i = 1, . . . , N :

(q3i, q3i+1, q3i+2) = xi.

The configuration space of our system is then Rn, where now n = 3N . The equations of motion take the
form

(1.1) mα
d2qα
dt2

= Fα(q1, . . . , qn, q̇1, . . . , q̇n, t), 1 ≤ α ≤ n.

We now suppose that the forces are time-independent and conservative/ That is, we assume that there exists
a function V : Rn −→ R (a potential) such that

Fα(q1, . . . , qn, q̇1, . . . , q̇n, t) = Fα(q1, . . . , qn) = − ∂V
∂qα

(q1, . . . , qn).

Example 1.1. For example if N particles interact by gravitational attraction, then the potential is

V (x1, . . . , xN ) = −γ
∑
i 6=j

mimj

‖xi − xj‖
,

where γ is a universal constant.
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Under the assumption of time independent conservative forces the system of equations (1.1) takes the
form

(1.2) mα
d2qα
dt2

= − ∂V
∂qα

(q1, . . . , qn), 1 ≤ α ≤ n.

We rewrite equation (1.2) as a first order ODE by doubling the number of variables; this is a standard trick.
Call the new variables, the velocities, vα:

(1.3)

{
mα

dvα
dt = − ∂V

∂qα
(q1, . . . , qn)

dqα
dt = vα

A solution (q(t), v(t)) of the above system of equations is a curve in the tangent bundle TRn with d
dtq(t) =

v(t). The tangent bundle TRn is an example of a phase space.
It is standard to introduce a function

L(q, v) =
1

2

∑
α

mαv
2
α − V (q)

on the phase space TRn. The function is called the Lagrangian of the system. It is the difference of the
kinetic and the potential energies. We will see shortly that we can re-write (1.3) as

(1.4)
d

dt

(
∂L

∂vα

)
− ∂L

∂qα
= 0, 1 ≤ α ≤ n

The system of equations (1.4), which we will see are equivalent to Newton’s law of motion, is an example of
the Euler-Lagrange equations.

We now check that equations (1.3) and (1.4) are, indeed, the same. Since

∂

∂vα
(
1

2

∑
β

mβv
2
β) = mαvα

and
∂

∂qα
(
1

2

∑
mβv

2
β − V ) = − ∂V

∂qα
= Fα

we get

0 =
d

dt
(
∂

∂vα
L)− ∂L

∂qα
=

d

dt
(mαvα) +

∂V

∂qα
.

Hence

mα
dvα
dt

= − ∂V
∂qα

.

So far introducing the Lagrangian did not give us anything new. We now show that it does indeed allow
us to look at Newton’s law from another point of view, and that the new point of view has interesting
consequences.

2. Variational formulation

Let L : TRn → R be a Lagrangian (i.e., a smooth function). Let q(0), q(1) be two points in Rn. Consider
the collection P = P(q(0), q(1)) of all possible twice continuously differentiable (C2) paths γ : [a, b] −→ Rn
with γ(a) = q(0), γ(b) = q(1). That is, set

P := {γ : [a, b] −→ Rn | γ(a) = q(0), γ(b) = q(1)}.

The Lagrangian L defines a map

AL : P → R, AL(γ) :=

∫ b

a

L(γ(t), γ̇(t)) dt,

called an action.
We are now in position to state:
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Hamilton’s principle: physical trajectories between two points q(0), q(1) of the system governed
by the Lagrangian L are critical points of the action functional AL : P(q(0), q(1))→ R.

Proposition 2.1. Hamilton’s principle implies Euler-Lagrange equations and hence Newton’s law of motion.

Proof. The proof is well-known. Let γ : [a, b] −→ Rn be a critical point (path, trajectory) of an action
functional AL; let γ(t, ε) be a family of paths depending on ε ∈ R such that γ(t, 0) = γ(t) and such that for
all ε we have γ(a, ε) = γ(a) and γ(b, ε) = γ(b) (i.e., we fix the end points).

Let y(t) = ∂
∂ε

∣∣
ε=0

γ(t, ε). Note that y(a) = 0 and y(b) = 0 since the end points are fixed. Also

∂

∂ε

∣∣
ε=0

(
∂

∂t
γ(t, ε)) =

∂

∂t
(
∂

∂ε

∣∣
ε=0

γ(t, ε)) = ẏ(t).

Conversely, given a curve y : [a, b] → Rn with y(a) = y(b) = 0, we can find a family of paths γ(t, ε) with
fixed end points such that

γ(t, 0) = γ(t) and
∂

∂ε

∣∣
ε=0

(
∂

∂t
γ(t, ε)) = ẏ(t).

For example, we may take

γ(t, ε) = γ(t) + εy(t).

Now

0 =
d

dε

∣∣∣∣
ε=0

AL(γ(t, ε)) =
d

dε

∣∣∣∣
ε=0

∫ b

a

L(γ(t, ε), γ̇(t, ε)) dt

=

∫ b

a

d

dε

∣∣
0
Ldt =

∑
α

∫ b

a

(
∂L

∂qα

∂qα
∂ε

∣∣
ε=0

+
∂L

∂vα

∂vα
∂ε

∣∣
ε=0

) dt

=
∑
α

∫ b

a

(
∂L

∂qα
yα +

∂L

∂vα
ẏα) dt

=
∑
α

{
∫ b

a

∂L

∂qα
yα dt+

∂L

∂vα
yα
∣∣b
a
−
∫ b

a

d

dt
(
∂L

∂vα
) yα dt} (integration by parts)

=
∑
α

∫
(
∂L

∂qα
− d

dt
(
∂L

∂vα
))yα dt (since yα(a) = yα(b) = 0) for all α).

(2.1)

We now recall without proof:

Lemma 2.2. If f : [a, b]→ R is continuously differentiable function with the property that for any continu-
ously differentiable function y : [a, b]→ R with y(a) = y(b) = 0, we have∫ b

a

f(t)y(t) dt = 0,

then f has to be identically zero.

We conclude that for any index α we must have

∂L

∂qα
− d

dt
(
∂L

∂vα
) = 0.

That is to say, Hamilton’s principle implies the Euler-Lagrange equations. �

Note that we have proved that given a Lagrangian there is a vector field on TRn whose integral curves
are the critical curves of the corresponding action.
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3. Constrained systems and d’Alembert principle.

We start by listing examples of constrained systems (all constraints are time-independent, that is, sclero-
nomic).

Example 3.1 (Spherical pendulum). The system consists of a massive particle in R3 connected by a very
light rod of length ` to a universal joint. The configuration space of this system is a sphere S2 of radius `.
The phase space is TS2. This is an example of a holonomic constraint.

Example 3.2 (Free rigid body). The system consists of N point masses in R3 maintaining fixed distances
between each other:

‖xi − xj‖ = constij .

We will see later that the configuration space is E(3), the Euclidean group of distance preserving trans-
formations of R3. It is not hard to show that E(3) consists of rotations and translations. In fact we can
represent E(3) as a certain collection of matrices:

E(3) ' {
(
A v
0 1

)
∈ R42 |ATA = I,detA = ±1, v ∈ R3}.

The group E(3) is a 6-dimensional manifold, hence the phase space for a free rigid body is TE(3). The free
rigid body is also an example of a system with a holonomic constraint.

Example 3.3 (A quater rolling on a rough plane in an upright position (without slipping)). The configu-
ration space is (R2 × S1) × S1, where the elements of R2 keep track of the point of contact of the quarter
with the rough plane, the points in the first S1 keeps track of the orientation of the plane of the quarter and
points of the second S1 keep track of the orientation of the design on the quarter. The phase space of the
system is smaller than

T (R2 × S1 × S1)

because the point of contact of the quarter with the plane has to be stationary. This is an example of
non-holonomic constraints, since the constraints on position do not determine the constraints on velocity:
the roll-no-slip condition is extra.

This leads us to a definition.

Definition 3.4. Time-independent constraints are holonomic if the constraint on possible velocities are
determined by the constraints on the configurations of the system. In other words if the constraints confine
the configurations of the system to a submanifold M of Rn and the corresponding phase space is TM , then
the constraints are holonomic.

We will study only holonomic systems with an added assumption: constraint forces do no work.

We are now in position to formulate:

d’Alembert’s principle: If constraint forces do no work, then the true physical trajectory of the
system are extremals of the action functional of the free system restricted to the paths lying in the
constraint submanifold.

This principle is very powerful: we no longer need to know anything about the constraining forces except
for the fact that they limit the possible configurations to a constraint submanifold. We now investigate the
equations of motion that d’Alembert’s principle produces.

Let M ⊆ Rn be a submanifold and let

L : TRn ⊇ TM −→ R

be a Lagrangian for an unconstrained( “free”) system. By d’Alembert’s principle our system evolves along
a path

γ : [a, b] −→M
4



such that γ is critical for

AL : {σ : [a, b] −→M |σ(a) = q(0), σ(b) = q(1)} → R

AL(σ) =

∫ b

a

L(σ, σ̇) dt

Suppose the end points q(0) and q(1) lie in some coordinate patch on M . Let (q1, . . . , qn) be the coordinates
on the patch and let (q1, . . . , qn, v1, . . . , vn) be the corresponding coordinates on the corresponding patch in
TM . The same argument as before (cf. Proposition 2.1) gives us Euler-Lagrange equations

d

dt
(
∂L

∂vα
)− ∂L

∂qα
= 0!

Note that these equations represent a vector field on a coordinate patch in the tangent bundle TM .

Example 3.5 (Planar pendulum). The system consists of a heavy particle in R3connected by a very light
rod of length ` to a fixed point. Unlike the spherical pendulum the rod is only allowed to pivot in a fixed
vertical plane. The configuration space M is the circle S1 ⊂ R2 of radius `. The Lagrangian of the free
system is

L(x, v) =
1

2
m(v21 + v22)−mgx2,

where

• m is the mass of the particle,
• x1, x2 are coordinates on R2,
• x1, x2, v1, v2 are the corresponding coordinates on TR2 and
• g is the gravitational acceleration (9.8 m/s2).

We compute the equations of motion for the constraint system as follows Consider the embedding

S1 −→ R2, ϕ 7→ (` sinϕ,−` cosϕ).

The corresponding embedding

TS1 −→ TR2

is given by

(ϕ, vϕ) 7→ (` sinϕ,−` cosϕ, ` cosϕvϕ, ` sinϕvϕ).

Therefore the constraint Lagrangian is given by

L(ϕ, vϕ) =
1

2
m(`2 cos2 ϕv2ϕ + `2 sin2 ϕv2ϕ) +mg` cosϕ =

1

2
m`2v2ϕ +mg` cosϕ.

The corresponding Euler-Lagrange equation is

d

dt
(
∂L

∂vϕ
)− ∂L

∂ϕ
= 0,

i.e.,

m`2
dvϕ
dt

+mg` sinϕ = 0.

Therefore

ϕ̈ = −g
`

sinϕ

is the equation of motion.
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4. Legendre transform

We start with a brief digression which will serve as a toy example of a Legendre transform. Let

L : V → R

be a smooth function on a vector space V and let

v1, . . . vn : V → R

be coordinates on V . For example, {vi}ni=1 could be linear functionals on V that form a basis of the dual
space V ∗. For each v ∈ V consider the matrix

(
∂2L

∂vi∂vj
(v))

of second order partials. It can be interpreted as a quadratic form d2L(v) on V as follows: for u,w ∈ V with
coordinates (u1, . . . , un) and (w1, . . . , wn) respectively we set

d2L(v)(u,w) =
∑
i,j

∂2L

∂vi∂vj
(v) uiwj

(
= uT

(
∂2L

∂vi∂vj
(v)

)
w.

)
The quadratic form d2L(v) also has a coordinate-free definition. By the chain rule, for any u,w ∈ V ,

d2L(v)(u,w) =
∂2

∂s∂t
L(v + su+ tw)

∣∣∣∣
(0,0)

.

We note that the matrix ( ∂2L
∂vi∂vj

(v)) is invertible if and only if the quadratic form d2L(v) is nondegenerate.

This ends a digression and we go back to studying Lagrangians on phase spaces.
Recall that given a Lagrangian

L : TM → R
and two points m1,m2 ∈M , the corresponding action

AL : { C1 paths connecting m1 to m2} → R

is defined by

AL(σ) =

∫ b

a

L(σ(t), σ̇(t)) dt.

Suppose that the points m1, m2 lie in a coordinate patch U with coordinates x1, . . . , xn : U → R. Let
x1, . . . , xn, v1, . . . , vn be the corresponding coordinates on TU ⊂ TM . We saw that a path γ : [a, b] → U ,
γ(a) = m1, γ(b) = m2, is critical for the action AL if and only if the Euler-Lagrange equations

d

dt

(
∂L

∂vi
(γ(t), γ̇(t))

)
− ∂L

∂xi
(γ, γ̇) = 0, 1 ≤ i ≤ n

hold. Now
d

dt
(
∂L

∂vi
(γ, γ̇)) =

∑
j

(
∂2L

∂xj∂vi
γ̇j +

∂2L

∂vj∂vi
γ̈j).

Hence the Euler-Lagrange equations read∑
j

∂2L

∂vi∂vj
γ̈j =

∂L

∂xi
−
∑
j

∂2L

∂xj∂vi
γ̇j 1 ≤ i ≤ n.

We now make an important assumption: L is a regular Lagrangian. That is. we assume that the matrix

(
∂2L

∂vi∂vj
(x, v))

is invertible for all (x, v) ∈ TU . Equivalently we assume that for all x ∈ U the form

d2L
∣∣
TxM

(v)
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is nondegenerate for all v ∈ TxM . Then there exists an inverse matrix

(Mki) = (Mki(x, v)) =

(
∂2L

∂vi∂vj
(x, v)

)−1
It is defined by ∑

i

Mki
∂2L

∂vi∂vj
= δkj ,

where, as usual, δkj is the Kronecker delta function. Under this assumption∑
i,j

Mki
∂2L

∂vi∂vj︸ ︷︷ ︸
δkj

γ̈j =
∑
i

Mki(
∂L

∂xi
−
∑
j

∂2L

∂xj∂vi
γ̇j),

hence

(4.1) γ̈k =
∑
i

Mki(
∂L

∂xi
−
∑
j

∂2L

∂xj∂vi
γ̇j)

Exercise 4.1. Let g be a Riemannian metric on M and let L(x, v) = 1
2g(x)(v, v). Check that this Lagrangian

is regular. What does (4.1) look like for this L?

We can rewrite (4.1) as first order system in 2n variables.

(4.2)

ẋj = vj

(ẍk =)v̇k =
∑
i

Mki(
∂L

∂xi
−
∑
j

∂2L

∂xj∂vi
vj)

Note that in physics literature the coordinates xi’s are usually called qi’s and the corresponding coordinates
vi’s are usually called q̇i’s. The confusing point here is that the dot above qi does not stand for anything; q̇i
is simply a name of a coordinate.

Equation (4.2) means that we have a vector field XL on TU :

XL(x, v) =
∑
j

vj
∂

∂xj
+
∑
k,i

Mki(
∂L

∂xi
−
∑
j

∂2L

∂xj∂vi
vj)

∂

∂vk

The vector field XL is called the Euler-Lagrange vector field. One can show that

Proposition 4.1. XL is a well-defined vector field on the tangent bundle TM , i.e. it transforms correctly
under the change of variables.
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