1. The tangent bundle

Definition 1.1 (provisional). The tangent bundle $T M$ of a manifold M is (as a set)

$$
T M=\bigsqcup_{a \in M} T_{a} M
$$

Note that there is a natural projection (the tangent bundle projection)

$$
\pi: T M \rightarrow M
$$

which sends a tangent vector $v \in T_{a} M$ to the corresponding point a of M.
We want to show that the tangent bundle $T M$ itself is a manifold in a natural way and the projection map $\pi: T M \rightarrow M$ is smooth. Strictly speaking, we first should specify a topology on $T M$. However, our strategy will be different. We will first find candidates for coordinate charts on the tangent bundle TM. They will be constructed out of coordinate charts on M. We will check that the change of these candidate coordinates on $T M$ is smooth. One then can use these candidate coordinates to manufacture a topology on $T M$, an issue that we will ignore.

Remark 1.2 (Comment on notation). On \mathbb{R}^{n} we have n real valued smooth coordinate functions r_{1}, \ldots, r_{n}; r_{j} assigns to a point $a=\left(a_{1}, \ldots, a_{n}\right)$ its j th coordinate: $r_{j}\left(a_{1}, \ldots, a_{n}\right)=a_{j}$. If $F: X \rightarrow \mathbb{R}^{n}$ is any function then F cooresponds to an n-tuple of real-valued functions on X :

$$
F(x)=\left(F_{1}(x), \ldots, F_{n}(x),\right.
$$

where $F_{j}(x)$ is the j th coordinate of $F(x)$. Thus $F_{j}(x)=r_{j}(F(x))=\left(r_{j} \circ F\right)(x)$ and consequently $F_{j}=r_{j} \circ F$.
Similarly, but not entirely consistatntly, we say " $\varphi=\left(x_{1}, \ldots x_{n}\right): U \rightarrow \mathbb{R}^{n}$ is a coordinate chart on a manifold M " to mean that $x_{j}(m)=r_{j}(\varphi(m))$ for $m \in U \subset M$. Thus $x_{j}=r_{j} \circ \varphi$.

Let $\phi=\left(x_{1}, \cdots, x_{n}\right): U \rightarrow \mathbb{R}^{n}$ be a coordinate chart on M. Out of it we construct a chart on $T U=$ $\bigsqcup_{a \in U} T_{a} M \subset T M$. The first n functions come for free: we take the functions $x_{1} \circ \pi, \ldots, x_{n} \circ \pi$. Another set of n functions come for free also: given a vector $v \in T_{a} U$,

$$
v=\left.\sum\left(d x_{i}\right)_{a}(v) \frac{\partial}{\partial x_{i}}\right|_{a} .
$$

Hence, abusing the notation a bit, we get maps

$$
d x_{i}: T U \rightarrow \mathbb{R}, \quad T U \ni v \mapsto\left(d x_{i}\right)_{a}(v), \text { where } a=\pi(v) .
$$

Thus we define a candidate coordinate chart

$$
\tilde{\phi}:=\left(x_{1} \circ \pi, \cdots, x_{n} \circ \pi, d x_{1}, \cdots, d x_{n}\right): T U \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}
$$

by

$$
\tilde{\phi}(v)=\left(x_{1}(\pi(v)), \ldots, x_{n}(\pi(v)),\left(d x_{1}\right)_{\pi(v)}(v), \ldots,\left(d x_{n}\right)_{\pi(v)}(v)\right) .
$$

If $\left.\left\{U_{\alpha}, \phi_{\alpha}\right)\right\}$ is an atlas on M, we get a candidate atlas $\left\{\left(T U_{\alpha}, \tilde{\phi}_{\alpha}\right)\right\}$ on $T M$. To see why this could possibly be an atlas, we need to check that the change of coordinates in this new purported atlas is smooth. To this end pick two coordinate charts $\left(U, \phi=\left(x_{1}, \cdots, x_{n}\right)\right)$ and $\left(V, \psi=\left(y_{1}, \cdots, y_{n}\right)\right)$ on M with $U \cap V \neq \emptyset$. Then $T(U \cap V)=T U \cap T V \neq \emptyset$. Let

$$
\tilde{\phi}=\left(x_{1}, \cdots, x_{n}, d x_{1}, \cdots, d x_{n}\right): T U \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}
$$

and

$$
\tilde{\psi}=\left(y_{1}, \cdots, y_{n}, d y_{1}, \cdots, d y_{n}\right): T V \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}
$$

be the corresponding candidates charts on $T M$. Now let us compute the change of coordinates $\tilde{\psi} \circ \tilde{\phi}^{-1}$.
First, note that

$$
\tilde{\phi}^{-1}\left(r_{1}, \cdots, r_{n}, u_{1}, \cdots, u_{n}\right)=\left.\sum_{i} u_{i} \frac{\partial}{\partial x_{i}}\right|_{\phi^{-1}\left(r_{1}, \cdots, r_{n}\right)} \in T_{\phi^{-1}\left(r_{1}, \cdots, r_{n}\right)} M
$$

So

$$
\tilde{\psi}\left(\left.\sum u_{i} \frac{\partial}{\partial x_{i}}\right|_{\phi^{-1}\left(r_{1}, \cdots, r_{n}\right)}\right)=\left(\psi\left(\phi^{-1}\left(r_{1}, \cdots, r_{n}\right)\right), d y_{1}\left(\sum_{i} u_{i} \frac{\partial}{\partial x_{i}}\right), \cdots, d y_{n}\left(\sum_{i} u_{i} \frac{\partial}{\partial x_{i}}\right)\right) .
$$

But

$$
d y_{j}\left(\sum_{i} u_{i} \frac{\partial}{\partial x_{i}}\right)=\sum_{i} u_{i}\left(\frac{\partial}{\partial x_{i}}\left(y_{j}\right)\right)=\sum_{i} \frac{\partial y_{j}}{\partial x_{i}} u_{i}=\sum_{i} \frac{\partial}{\partial r_{i}}\left(r_{j}\left(\psi \circ \phi^{-1}\right)\right) u_{i}
$$

Thus the change of the candidate coordinates is given by

$$
\begin{align*}
\tilde{\psi} \circ \tilde{\phi}^{-1}\left(r_{1}, \cdots, r_{n}, u_{1}, \cdots, u_{n}\right) & =\left(\psi \circ \phi^{-1}(r),\left(\sum_{i} \frac{\partial y_{1}}{\partial x_{i}}(r) u_{i}, \ldots, \sum_{i} \frac{\partial y_{n}}{\partial x_{i}}(r) u_{i}\right)\right) \\
& =\left(\psi \circ \phi^{-1}(r),\left(\frac{\partial y_{j}}{\partial x_{i}}(r)\right)\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right)\right), \tag{1.1}
\end{align*}
$$

where $r=\left(r_{1}, \ldots r_{n}\right)$. Clearly $\tilde{\psi} \circ \tilde{\phi}^{-1}$ is smooth wherever it is defined. It remains to define a topology on $T M$ so that the charts $\tilde{\phi}: T U \rightarrow \phi(U) \times \mathbb{R}^{n}$ are homeomorphisms. We declare a subset $O \subset T M$ to be open if for any coordinate chart $\phi: U \rightarrow \mathbb{R}^{n}$ on M, the set $\tilde{\phi}(O \cap T U) \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is open.
Proposition 1.3. The collection of open sets on TM defined above does indeed form a topology. Moreover, if M is Hausdorff and second countable, so is TM.

Proof. We ignore these technicalities and save them for a graduate course in differential topology.
We conclude that if M is an n-dimensional then its tangent bundle $T M$ is a $2 n$-dimensional manifold. Moreover, each coordinate chart $\left(x_{1}, \ldots x_{n}\right): U \rightarrow \mathbb{R}^{n}$ on M gives rise to a coordinate chart $\left(x_{1} \circ \pi, \ldots x_{n} \circ\right.$ $\left.\pi, d x_{1}, \ldots, d x_{n}\right): T U \rightarrow \mathbb{R}^{2 n}$.

Remark 1.4. The following notation is suggestive: we write $(m, v) \in T M$ for $v \in T_{m}(M)$. Strictly speaking, it is redundant since $m=\pi(v)$.

Remark 1.5. It is customary to simply write $x_{i}: T U \rightarrow \mathbb{R}$ for $x_{i} \circ \pi: T U \rightarrow \mathbb{R}$.

2. The cotangent bundle

As a set, the cotangent bundle $T^{*} M$ is the disjoint union of cotangent spaces:

$$
T^{*} M=\bigsqcup_{a \in M} T_{a}^{*} M
$$

Note that there is a natural projection (the cotangent bundle projection)

$$
\pi: T^{*} M \rightarrow M
$$

which sends a cotangent vector (a covector for short) $\eta \in T_{a}^{*} M$ to the corresponding point a of M. We make the cotangent bundle $T^{*} M$ into a manifold in more or less the same way we made the tangent bundle into a manifold. That is, we manufacture new coordinate charts on $T^{*} M$ out of coordinate charts on M and check that the transition maps between the new coordinate charts are smooth.

So let $\phi=\left(x_{1}, \ldots, x_{n}\right): U \rightarrow \mathbb{R}^{n}$ be a coordinate chart on M. Then for each point $a \in U$ the covectors $\left\{\left(d x_{i}\right)_{a}\right\}$ form a basis of $T_{a}^{*} M$. The partials $\left\{\left.\frac{\partial}{\partial x_{i}} \right\rvert\, a\right\}$ form the dual basis. Hence for any $\eta \in T_{a}^{*} M$,

$$
\eta=\sum \eta\left(\left.\frac{\partial}{\partial x_{i}}\right|_{a}\right)\left(d x_{i}\right)_{a}
$$

Therefore the partials $\left\{\frac{\partial}{\partial x_{i}}\right\}$ give us coordinate functions on $T^{*} U$:

$$
\frac{\partial}{\partial x_{i}}: T^{*} U \rightarrow \mathbb{R}^{n}, \quad T^{*} U \ni \eta \mapsto \eta\left(\left.\frac{\partial}{\partial x_{i}}\right|_{a}\right),
$$

where $a=\pi(\eta)$. We now define the candidate coordinates

$$
\bar{\phi}: T^{*} U \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}
$$

by

$$
\bar{\phi}=\left(x_{1} \circ \pi, \ldots, x_{n} \circ \pi, \frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right) .
$$

Note that

$$
\bar{\phi}^{-1}\left(r_{1}, \ldots, r_{n}, w_{1}, \ldots, w_{n}\right)=\sum_{i=1}^{n} w_{i}\left(d x_{i}\right)_{\phi^{-1}(r)} \in T_{\phi^{-1}(r)}^{*} M,
$$

where again we have abbreviated $\left(r_{1}, \ldots, r_{n}\right)$ as r. We now check the transition maps. Let $\psi=\left(y_{1}, \ldots, y_{n}\right)$: $V \rightarrow \mathbb{R}^{n}$ be a coordinate chart on M with $V \cap U \neq \emptyset$. Then

$$
\begin{aligned}
\bar{\psi} \circ \bar{\phi}^{-1}\left(r_{1}, \ldots, r_{n}, w_{1}, \ldots, w_{n}\right) & =\bar{\psi}\left(\sum_{i=1}^{n} w_{i}\left(d x_{i}\right)_{\phi^{-1}(r)}\right) \\
& =\left(\left(\psi \circ \phi^{-1}\right)(r), \frac{\partial}{\partial y_{1}}\left(\sum_{i=1}^{n} w_{i} d x_{i}\right), \ldots, \frac{\partial}{\partial y_{n}}\left(\sum_{i=1}^{n} w_{i} d x_{i}\right)\right) \\
& =\left(\left(\psi \circ \phi^{-1}\right)(r), \sum_{i} w_{i} \frac{\partial x_{i}}{\partial y_{1}}, \ldots, \sum_{i} w_{i} \frac{\partial x_{i}}{\partial y_{n}}\right) .
\end{aligned}
$$

We conclude that

$$
\bar{\psi} \circ \bar{\phi}^{-1}\left(r_{1}, \cdots, r_{n}, w_{1}, \cdots, w_{n}\right)=\left(\psi \circ \phi^{-1}(r),\left(\frac{\partial x_{i}}{\partial y_{j}}(r)\right)\left(\begin{array}{c}
w_{1} \tag{2.1}\\
\vdots \\
w_{n}
\end{array}\right)\right)
$$

which is smooth. The rest of the argument proceeds as in the case of the tangent bundle.
Remark 2.1. Later on, when we look at the general vector bundles, it will be instructive to compare the formulas for the change of coordinates in the tangent and the cotangent bundles. In particular note that the matrices $\left(\frac{\partial y_{j}}{\partial x_{i}}(r)\right)$ and $\left(\frac{\partial x_{i}}{\partial y_{j}}(r)\right)$ are inverse transposes of each other.

