The second midterm will cover lectures 15 - 29. You are expected to know definitions and be able to supply proofs of theorems that are relatively short.

Please report any issues on CAMPUSWIRE.

1 Suppose X is a connected topological space and $f : X \to Y$ is continuous. Prove that the image f(X) is connected.

2 Prove that any path connected space is connected.

Hint: you may (and you would need to) assume that [0, 1] is connected.

3 Is every connected space path connected? Is a connected open subset of \mathbb{R}^n path connected? Explain.

4(a) State and prove Rolle's theorem. You may use the fact that at extremal points of a differentiable function its derivative vanishes.

4(b) Use Rolle's theorem to prove the Mean Value theorem.

5 Suppose $f : (a, b) \to \mathbb{R}$ is differentiable at $x_0 \in (a, b)$. Is f continuous at x_0 ? Can you prove your answer?

- **6** What does the inverse function theorem say?
- 7 What does Taylor's theorem say?

8 Suppose $f: (-1,1) \to \mathbb{R}$ is infinitely differentiable and all the derivatives of f at 0 are zero: $f^{(k)}(0) = 0$ for all k. Does f have to be constant? What's the Taylor series of f?

- 9 State the Cauchy criterion for integrability.
- 10 Prove that monotone functions are integrable.
- 11 Prove that continuous functions are integrable.
- **12** Suppose $f, g: [a, b] \to \mathbb{R}$ are integrable. Is |f| integrable? Is the product fg integrable?
- 13 State the two versions of the fundamental theorem of calculus.
- 14 State and prove integration by parts.

15 What is change of variables formula for integrals? What do you need to assume about the functions involved?

16 Define natural logarithm function $\ln(x)$ in terms of an integral.

17 Suppose $\{f_n : [a,b] \to \mathbb{R}\}$ is a sequence of integrable functions converging to a function f. What is enough to assume to guarantee that $f = \lim f_n$ is integrable and that $\int_{[a,b]} f = \lim \int_{[a,b]} f_n$? **18** Suppose $\{f_n : (a, b) \to \mathbb{R}\}$ is a sequence of differentiable functions converging to a f. Give a sufficient condition to guarantee that f is differentiable and that the sequence of derivatives f'_n converge to f'.

19 Give a sufficient condition for

$$\frac{d}{dx}\left(\int_{a}^{b} f(x,y)\,dy\right) = \int_{a}^{b}\frac{\partial}{\partial x}f(x,y)\,dy.$$

20 What does it mean for a series $\sum a_n$ to converge? To converge absolutely? To converge conditionally? Give an example of a conditionally convergent series.

21 Give an example of a function $f : [0,1] \to \mathbb{R}$ such that f is not integrable but |f| is. If f is integrable, is |f| necessarily integrable?

22 Prove the mean value theorem for integrals: if $f : [a, b] \to \mathbb{R}$ is continuous, then there is $c \in (a, b)$ such that

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f.$$

23 Prove or give a counterexample: if f, g are integrable on [a, b] and h is a function such that

$$f(x) \le h(x) \le g(x)$$

for all $x \in [a, b]$ then h is integrable on [a, b].

24 Let $F(x) = \int_0^x x e^{t^2} dt$. Find F''(x) for $x \in (0,1)$. Caution: $F'(x) \neq x e^{x^2}$.

25 Prove that if $\sum |a_n|$ converges and $\{b_n\}$ is a bounded sequence then $\sum a_n b_n$ converges. [This is a lot easier to prove than Dirichlet criterion.]

26 Let $S \subset \mathbb{R}$ be a set bounded above and c > 0. Prove that

$$\sup \{cx \mid x \in S\} = c \sup \{x \mid x \in S\}.$$