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1. LECTURE 1. INTRODUCTION AND BASIC DEFINITIONS

A symplectic manifold is a pair (M,w) where M is a manifold and w is a nondegenerate
closed 2-form on M (nondegeneracy is defined below).

What are the reasons for studying symplectic geometry? It is an outgrowth of classical
mechanics. It has connections with

e classical mechanics,

quantum mechanics (via geometric quantizations, deformation quantization),
representations of Lie groups — “the orbit method”,

PDEs (via microlocal analysis),

gauge theory,

geometric invariant theory in algebraic geometry...

We first define nondegeneracy of a skew-symmetric bilinear form on a vector space.

Definition 1. Let V' be a vector space. Let w : V x V — R be a skew-symmetric, bilinear
2-form, w € /\2 V*. The form w is nondegenerate if for every v € V,

wv,u) =0 YueV == v=20
Note that since w is skew-symmetric w(v,v) = —w(v,v), hence w(v,v) = 0.

Example 1. Let V = R? with coordinates z and y. It is not hard to check that the bilinear
form w = dx A dy is nondegenerate (also see below).

Here is a criterion for nondegeneracy. Given as skew-symmetric bilinear form w on a (finite
dimensional) vector space V', define the linear map WV — V*by v w(v,-). Because w is
bilinear, w? is linear, so w' is well-defined. We claim that w is non-degenerate if and only if w?
is 1-1. Indeed, suppose wf(v) = 0. Then w*(v)(u) = 0 = w(v,u) for any u € V.

Note that w! is 1-1 if and only if w? is an isomorphism, since for a finite dimensional vector
space dim V' we have dim V' = dim V*.

Definition 2. A symplectic vector space is a pair (V,w) where V is a vector space and
w € A*(V*) is a nondegenerate bilinear skew-symmetric form.

We can now define a nondegenerate differential two-form. The condition is pointwise.
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Definition 3. A two-form w € Q?(M) is nondegenerate if and only if for any point m € M,
the bilinear form w,, on the tangent space T,,M is nondegenerate.

Example 2. Again consider V = R? with coordinates = and y. Consider w = dx A dy as a
(constant coefficient) differential form. It is easy to see that wﬁ(a%) = L(a%)(da: Ady) = dy
and that similarly wﬁ(a%) = —dz. So w! is bijective. Therefore (R%, dz A dy) is a symplectic
manifold.

Let (M,w) be a symplectic manifold. Then for every point m € M, (wy,)* : TyM — T\ M
is an isomorphism so there is a correspondence between 1-forms and vector fields. In particular,
given a function f € C*°(M), the differential df of f is a one-form m > df,, = g—a{:(d:ci)m.
This gives us a vector field X ¢(m) := ((wp)*) "1 (dfm). Equivalently X; is defined by ¢(Xf)w =
df.

Definition 4. The vector field X; defined above is called the Hamiltonian vector field of
the function f on a symplectic manifold (M, w).

Example 3. Consider the symplectic manifold (M = R?, w = dz A dy). Let f : R? — R be
a smooth function. Let’s compute its Hamiltonian vector field X :

df = 9Ldz + GLay.

T

(wﬁ)({%) = dy, (wﬁ)(a%) = —dz. Hence

of . 41 of . w1 of 9 Of 0

— d — dy) = ———+ ——.

RGN $)+*8y(w )~ (dy) 909y 9y or
Exercise 1. Check that (M = R? w = (224+y?+1) dzAdy) is a symplectic manifold. Compute
the Hamiltonian vector field of a function of f on this symplectic manifold.

Xp = (wh)7Hdf) =

Example 4. The manifold M = R?>" with coordinates qi,...,qn,P1,-..,pn and the form .
w = Y _dg; A\ dp; is a symplectic manifold.

The Hamiltonian vector field of a function fis Xy =>7", (_g_zi@%i + gzi 8‘?11,).

So far we haven’t talked about the condition dw = 0. One consequence of the condition is:

Theorem 5 (Darboux theorem). Let M be a manifold, w a symplectic form on M. Then
dim M is even, say 2n. Moreover, for every point m € M, there are coordinates qi, ..., Gn,P1,---,Dn
defined near m such that in these coordinates w =Y dg; A dp;.

The proof will take the next few lectures. The first step of the proof is to consider the linear
case.

Theorem 6. Let (V,w) be a finite dimensional symplectic vector space. Then
1. V is even dimensional, and
2. there is a basis e1,...,en, f1,..., fn,wWhere n = %dimV such that w(e;, fj) = dij and
w(es,ej) =0 =w(fi, f;) where §;; is the Croniker delta function.
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Consequently, w =Y ef A [ where e}, ..., e}, ff,..., [ € V* is the dual basis.
Remark 7. The basis ey, ...,en, f1,..., frn in the above theorem is called a symplectic basis.

Proof. (induction on the dimension of V). Let e; be any nonzero vector in V. Since the form
w is nondegenerate there exists a vector f € V such that w(ey, f) # 0. Let f; = m Then
w(e1, f1) = 1. Let W = Span{ey, f1} = {ae1 +bf1 : a,b € R}.

We now briefly digress.

Definition 8. Let (V,w) be a symplectic vector space and let U C V a linear subspace. The
symplectic perpendicular to U in V is the space UY :={v eV : w(v,u) =0,Yu € U }.

Proposition 9. Let (V,w) be a symplectic vector space, U C V' a linear subspace and U“ be
the symplectic perpendicular. Then

dimU + dim U = dim V.
In fact the isomorphism w* : V. — V* maps U% onto the annihilator U° of U in V*.
Recall that U° := {¢ € V* | {|y = 0}.

Proof. Since dimU° = dim V —dim U, it is enought to prove the last claim. If v € U% than for
any u € U,
0=w(v,u) = w(v)(u).

Hence wf(v) € U°.

Conversely, since w? is onto, any £ € V* is of the form ¢ = w#(v) for some v. If £ is in U°,
then for any u € U

0="L(u) = (v)(u) = wv,u).

Hence v € U°. O

Note U¥ NU need not be zero. For exaple if U is a line, i.e., U = Ru for some 0 # w then
since w(u,u) = 0, we have Ru C (Ru)¥. On the other hand we need not have U C U¥ either.

Lemma 10. Let (V,w) be a symplectic vector space, U C V a linear subspace and U¥ be the
symplectic perpendicular. Then
(U“)? =U.

Proof. By Proposition 9, dim(U%)¥ = dimV —dimU¥ = dimV — (dimV —dimU) = dimU.
Also U C (U¥)“. Therefore U = (U¥)“. O

Proof of Theorem 6 continued. Consider W*. We know dim W% = dim V —-dim W = dim V' —2.
We claim that W N W = {0}.

Indeed, suppose w € W N W<. Then w = ae; + bf; for some a,b € R. 0 = w(w,e;) =
w(aer + bfi,e1) = aw(er,e1) + bw(fi,er) = a-0+b-(=1) = —b. So b = 0. Similarly,
w(w, f1) = 0 = a. This proves the claim and implies, since dim W + dim W* = dim V' that
V=WwWaoeWwv.
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To get to the inductive step, it is enough to show the restriction of w to W* is nondegenerate.
But we have already proved this since if there is v € W* such that w(v,w) = 0 for all w € W*
then v € (W¥)¥ =W and WNW¥ = {0}, sov =0.

By induction, dim W*¢ is even, say 2n — 2, and there is a basis of W% eq, ... en, fo,..., fn
such that w(e;, f;) = dij, w(es,ej) = 0 = w(fi, f;) for all i, > 2. Therefore, dim V' is even,
and eq,...,en, f1,..., fn is the desired basis. O

Homework Problem 1. Prove that w € /\2 V* is non-degenerate if and only if w"™ = w A
e Aw#0 n:%dimV.

Homework Problem 2. Suppose V is a finite dimensional vector space (as usual over the
reals). Let w : V x V — R be any skew-symmetric, bilinear 2-form. Show that there is

a basis e1,...,eg, f1,..., fu, 21, .., z¢ such that w(z;,v) = 0 for all v € V., w(e;, fj) = iy,
w(es,ej) = 0 = w(fi, fj). Hence w = > ef A f¥ where e}, ... e5, fi,..., fi,25,..., 2 is the
dual basis.

This provides another proof for the fact that w € /\2 V* is non-degenerate if and only if
w™ £ 0 where n = %dim V.

2. LECTURE 2. SYMPLECTIC LINEAR ALGEBRA

There are several consequence of Theorem 6. The first one demonstrates the difference
between skew-symmetric and symmetric nondegenerate bilinear forms. The second one is a
through-away remark, though it is amusing.

1. Corollary 11. Any two symplectic forms on a given wvector space are the same, i.e. if
V' is a vector space and wi,ws are two symplectic forms on V, then there is an invertible
linear map A : V. — V such that wi(Av, Aw) = wa(v,w) for all vyw € V. That is,
A*wy = wy where (A*w1) (v, w) = wi(Av, Aw)

Proof. There exists a basis e1,...,en, f1,..., fn such that w; = Y " el A f7, and a basis
at,...,Qn, B1,..., 0, such that wy = > af ASF. Define A : V — V by A(a;) = e,
A(Bj) = fj. Then A*(e}) = of, A*(f}) = B;. Consequently, A*wy = A*(3_ef A f]) =
S(A*el) A (A7) = T af A B = wn :

2. Corollary 12. Any even dimensional vector space posesses a symplectic form.

Proof. Choose abasis e, ...,en, fi,..., fn, n = %dimV. Letel,...,e, f{,..., f; denote
the dual basis. Let w = > ef A fF, e],...,e, fr,..., fii dual basis. The form w is
nondegenerate. O

Definition 13. Let (V,w) be a symplectic vector space. A subspace U C V' is symplectic if
the restriction of the symplectic form w to U is non-degenerate. Equivalently U is symplectic
if and only if U N U¥ = {0}.

Exercise 2. Check that the two definitions of a symplectic subspace are are indeed equivalent.
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Example 5. Let (V,w) be a symplectic vector space of dimension 2n and let eq,..., e,
fi,-.., fn be a symplectic basis so that w = > ef A f. Let U = Span{ey, f1, €2, fo,..., €k, fx}
for some k < n. Then U is a symplectic subspace.

Exercise 3. Show that Example 5 is, in some sense, the only example. That is, given a sym-
plectic vector space (V,w) of dimension 2n and a symplectic subspace U show that there exists
a symplectic basis e1, ..., en, f1,..., fn of ((V,w) such that U = Span{e, f1,ea, fo,..., €k, fr}
for some k <n

Note that since (U¥)* = U, we have U N U* = {0} if and only if U¥ N (U*)* = {0}. Hence
a subspace U is symplectic if and only if its symplectic perpendicular U“ is symplectic. Also
since dimU% = dimV — dim U, if U is a symplectic subspace of (V,w) then V = U @ U¥.

Definition 14. A subspace E of (V,w) is isotropic if w(e,e’) = 0 for all e,¢’ € E. Equiva-
lently, F is an isotropic subspace if and only if £ C EY.

Example 6. Again let (V,w) be a symplectic vector space of dimension 2n with a symplectic
basis e1,...,€n, f1,..., fn. Consider the subspaces E := span{ei,...,ex}, for some k < n, and
F={fi,..., fe}, for some ¢ < n. Both E and F' are isotropic. (Check this!)

Example 7. A line in a symplectic vector space is always isotropic.

Note that since £ C V is isotropic if and only if ¥ C E¥, we have dim F < dim E¥ =
dimV — dim E = dim F < { dim V.

Definition 15. A subspace L of a symplectic vector space (V,w) is Lagrangian if and only
if L is maximally isotropic, i.e. if E is any isotropic subspace of V with £ D L, then F = L.

IfdimL = %dim V', and L is isotropic, then it is Lagrangian. The converse is also true.

Lemma 16. If L CV is a Lagrangian subspace of a symplectic vector space (V,w), the dim L =
1 q-

sdim V.

2

Proof (by contradiction). Suppose L C V is isotropic and dim L < %dim V. Then dim ¥ =
dimV — dim L > %dim V' > dim L. Therefore there is a vector v € L¥,v # 0,v ¢ L. Consider
F =L & Rv. We claim that E is again isotropic.

Indeed if e, e’ € E, there are {,/' € L and a,a’ € R such that e = £ + av and €’ = ¢ + a'v.
Now w(e,€’) = w(l + av, V' + a'v) = w(l,l') + ad'w(v,v) + aw(v, ') + d'w(f,v) = 0. Therefore
F is isotropic. Hence if L C V is isotropic and dim L < %dim V', L is not maximal. U

Note that the above argument gives another proof that a symplectic vector space has to be
even dimensional.

Note also that the existence of a symplectic basis e1,...,en, fi1,..., fn of (V,w) gives us
a splitting of V as a direct sum of two Lagrangian subspaces: V = FE @ F with F :=
Span{ei,...ey} and F := Span{fi,... fu}.
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Example 8 (The one and only example of a symplectic vector space). Let W be any vector
space and let W* = {{: W — R} be its dual. We have a natural bilinear pairing W* x W —
R given by (¢, w) — ¢(w) =: (¢, w). Consider V' = W*® and define a skew-symmetric bilinear
form wp : (W W*) x (WaeW*) — R by wo((¢,w), (¢',w") = (¢',w) — (¢,w'). The form wy is
non-degenerate. Indeed, suppose (¢, w) # (0,0). Then either w # 0 or £ # 0. Say w # 0. Then
there is ¢ such that ¢'(w) # 0. Therefore wy((¢,w), (0,¢')) = (¢',w) — 0 # 0. Similar argument
for ¢ # 0.
We will refere to the form wq as the canonical symplectic form on W x W*.

Definition 17. An isomorphism of two symplectic vector spaces (V,w) and (V' ') is an
invertible linear map A : V — V' such that w'(Av, Aw) = w(v,w). i.e. A% = w.

Exercise 4. Suppose A : V — V'’ is a linear map between two vector spaces . Let w,w’ be
symplectic forms on V, V' respectively. Show that if A*w’ = w, then A is injective.

Proposition 18. Given a symplectic vector space (V,w) there exists a Lagrangian subspace E
of V' and an isomorphism A : (V,w) — (E* x E,wp) of symplectic vector spaces, where wy is
the canonical symplectic form on E* x E (see Example 8 above).

Note that this gives another proof that symplectic vector spaces are classified by their di-
mension.

Proof. Let ey,...,en, f1,..., fn be a sympletic basis of (V,w). Let E = span{ey,...,e,} and
let ' ={f1,...,fn}. Then V=E®F. Define A: E® F — E* x E by A(e, ) = (w(-, f),€).
Then

O

We finish with an example of a symplectic basis of (W* @ W, wy): Let ey,..., e, be any basis

of W. Let e],...,e} be the dual basis. The collection {ey,...,en,€},..., €5} is a symplectic
basis.

3. LECTURE 3. COTANGENT BUNDLES AND THE LIOUVILLE FORM

Recall that a symplectic manifold is a pair (M,w), where M is a manifold and w is a closed
non-degenerate 2-form.

Example 9. Consider M = S%. Let w be any 2-form on S? such that w, # 0,Vz € S2.

Then (S?,w) is a symplectic manifold. For example if we identify the two sphere with the set

{(z1,72,23) € R? : 22423 +23 = 1} we may take w = (z1draAdrs+zadrsAdry+r3dr Adrs)|ge.
More generally, any surface ¥ with a nowhere vanishing two-form w is symplectic.
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Remark 19. If o is a form, we will write interchangeably o, and o(x) for its value at a point
x.

Theorem 20. The cotangent bundle M = T*X of a manifold X is naturally a symplectic
manifold.

Proof. We start by constructing the so called tautological one-form « (also known as the
Liouville form).

Let m: T*X — X denote the projection.

Consider a covector n € T*X. Let z = m(n), so that n € T:X.! Let v € T,,(T*X) so that
dmy(v) € T, X, where dmy : Ty(T*X) — Tr(pX = T X. We define

oy (v) = n(dmy(v)).

We need to show that « is smooth. Fix a covector 1y and let xp = m(n). Choose coordinates
x1,...,Ty on X near xg. Denote the corresponding coordinates on T*X by xyom,...,x, 0,
&1y, &n. Recall that &’s are defined by &;(n) = n(a%i ) for any covector 7 in the coordinate
patch on T*X. Then a(z10m, ..., 2,0m, 81, ., &n) = Q(y gydzy) = (O &iday)odm = ) &id(zi0m).
If we abuse notation by writing z; for z;o7 then a = ) §;dz;. So ay ¢4y, = D_ §idz;. Therefore
the tautological one-form « is smooth.

Next observe that da is a closed two-form and that in coordinates da = > d¢; A dx;. Hence
da is non-degenerate. So w := +da is a symplectic form on the cotangent bundle T X. O

We next address the naturality of the symplectic form da on T*X.

Homework Problem 3. Suppose X and Y are two manifolds. If f: X — Y a diffeomor-
phism, then it naturally lifts to a map f : T*X — T*Y of cotangent bundles:
For every point € X we have df, : T, X — Ty(,)Y. Since [ is invertible we get (dfz)~!:

Tt)Y — T X. By taking the transpose we get (df-HT T X — T]’f(z)Y. We now define f

by f(z,n) = (f(2), (df;)"n), where, of course, z = 7(n).
Let ay be the tautologiacal 1-form on T*Y, and ax be the tautologiacal 1-form on T%X.

Show that (f)*ay = ax. Conclude that (f)*day = dax.

Remark 21. In literature both da and —da are used as canonical/natural symplectic forms
on T*X. Recall that if f is a function on a symplectic manifold (M,w), it defines a vector
field Xy by ¢(Xf)w = +df. We always want in natural coordinates z1,...,2n,&1,...,&, on

T*X, Xp=31", ggf- 82_ - gj 821’- (this is traditional). So we can either choose w = —da and
U(Xf)w =df or w=da and (Xy)w = —df.

Homework Problem 4. Let X be a vector space. Then T*X = X @ X*. Show that dax =
+wy where wy is the natural symplectic form on X @& X* defined earlier (in Example 8).

Exercise 5. If i is any closed 2-form on a manifold X, then dax + 7*u is also a symplectic
form on T*X.

We will oftent abuse notation and write redundantly a pair (z,7) for a covector n € T X
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We now come to the first serious theorem.

Theorem 22 (Darboux Theorem). Let (M,w) be a symplectic manifold and let m € M be a
point. Then there exist coordinates (qi,...,qn,P1,---,Pn) defined on a neighborhood U C M of
m such that w =Y dp; Ndg; on U.

In other words all symplectic manifolds of a given dimension are locally isomorphic.

Let us now schetch the main ideas of the proof before doing the details.

1. Since the claim is local, we may assume M is a disk in R??, i.e., M = {(2%,...,23,) | 2% +
R x%n < R2},w = Zw”(x)dxz VAN dacj. Let wy = ZWU(O)d.TZ VAN d:cj.

2. Next we observe that it is enough to find ¢ : M — M (or on a smaller disk) such that
©*w = wp. This is because, as we saw in all constant coefficient symplectic forms are the same.
More precisely there is an A : R?® — R?" such that

n
Afwg = Z dx; N\ dxiin
i=1
(see Theorem 6 and its corollaries).

3. (Moser’s deformation argument) First make problem harder. Let w; = tw + (1 — ¢)wp.
Note that wi|i—g = wo, wi|t=1 = w, and that wi(0) = tw(0) + (1 — H)wp = wp. So w(0) is
nondegenerate for all 0 < ¢ < 1. Hence wy is symplectic for all ¢ in some neighborhood of 0.

Now, look for a family of diffeomorphisms {¢; : M — M }o<i<1 such that pfw; = wy and
o = id. The vector field X;(x) := %{Szlcps(x) is a time-dependent vector field. We will see
that knowing X is equivalent to knowing the isotopy {¢: }o<i<1-

We next observe that if such an isotopy exists then %(g@}" wt) = 0. On the other hand, we’ll
see that %(g@}" wt) = ¢f (Lx,wt) + @iy = 0 where L denotes the Lie derivative.

Recall that for any form o and any vector field Y we have

Ly (o) =du(Y)(o) + «(Y)d(o).
Consequently
@I(dL(Xt)Wt + L(Xt)du}t + wt) =0
do(X¢)w + o(X¢)dwr + &) =0 (since pullback by a diffeomorphism is injective)
di(Xy)wy = —wy  (since wy is closed)
Since wy = & (tw + (1 — t)wp) = w — wy, we have
du(Xp)we = wo — w.

The form w is closed, so wy — w is closed as well. Hence, by Poincaré Lemma, wy — w = df for
some one-form . We may assume 6(0) = 0.
We therefore are looking for a time-dependent vector field X; such that

d(L(Xt)wt) =df.
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Enough to find X; such that
(1) L(Xt)wt =4.

The form w; is non-degenerate near 0 in R?" for all ¢+ € [0,1]. So equation (1) has a unique
solution X; = (wf)_lﬁ. Also since 6(0) = 0, we have X;(0) = 0. Therefore

e the isotopy ¢, is defined for all ¢ € [0, 1] on a neighborhood 0 in R?"*, and

e ¢, (0)=0.
Also by construction, ¢(X¢)ws = 6, hence du(X¢)w: = df, hence .... %(gofwt) = 0 for all ¢, hence
Prwr = Powo = wo-

4. LECTURE 4. ISOTOPIES AND TIME-DEPENDENT VECTOR FIELDS

Definition 23. Let N be a manifold. A family of maps f; : N — N,t € [0, 1] is an isotopy
if

1. each f; is a diffeomorphism,

2. f() = idN, and

3. fi depend smoothly on ¢, i.e., the map [0,1] x N — N, (t,z) — f;(z) is smooth.

A time-dependent vector field { X },c(0,1] is @ smooth collection of vector fields, one for each
t. Again “smooth” means the map (¢,z) — Xy(z), R x N — T'N is smooth.

We will see shortly that there is a correspondence between isotopies and time-dependent
vector fields.

Detour: vector fields and flows.
Recall that a manifold N is Hausdorff, if for all x,2’ € N, x # 2/, there are neighborhoods
Uz, U 32 withUnU' =0.
Recall that if N is a Hausdorff manifold and X a vector field on N, then for every point
x € N, there is a unique curve v;(t) such that 7,(0) = x and %'ym(t) = X(7y,(t)) for all t.
The curve 7, is called an integral curve of X. It is defined on some interval containing 0. The
interval itself depends on the point z.

Example 10. Let N = (0,1) and X = %. Then ~,(t) = x+t, hence ~,(t) is defined whenever
O0<z+t<l1, thatis, —x <t<1l-—uzx.

Example 11 (of a non-Hausdorff manifold). Let X = R x {0, 1}, topologized as the disjoint
union of two copies of R. Define an equivalence relation on X by setting (z, ) ~ (y, 8) if and
only if either « = fand x = y, or « # [ and x = y # 0. Thus {(0,0)} and {(0,1)} each
constitute a distinct equivalence class, but all other classes are pairs {z,0), (z, 1)} where z # 0.
The quotient space N = X/ ~ is a non-Hausdorff manifold. It is easy to see that integral
curves of % on N are not unique.

From now on all the manifolds will be assumed to be Hausdorff (unless noted otherwise).
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Let X be a vector field on a manifold N. Recall that the flow of X on N is a map ¢ from
a subset of N x R into N given by

¢ (z,t) = Yz (t).
where as above 7, (t) is the integral curve of X passing through a point x at ¢t = 0.
Example 12. Let N = (0,1) and let X = 4. The flow of X on N is ¢(z,t) =z +¢.

We next recall a few facts about flows.

1. The domain of the flow ¢ of a vector field X on a manifold IV is an open subset of NV x R.

2. Write ¢y (z) = ¢(z,t). Then ¢y(ps(t)) = ¢pi4s(x) whenever both sides are defined. This is

the “group property” of the flow.

3. If the set {z € N, X(x) # 0} is compact, then the flow ¢, is defined for all ¢.

Note: it follows from (1) that if for some xg € N, ¢¢(z¢) exists for ¢ € [0,T], then for some
neighborhood U of xp in N such that for all z € U, ¢(z) exists for all ¢ € [0,7]. (This is
because {zo} x [0,T] is compact.)

In particular, if X (z¢) = 0, then ¢¢(xg) = x¢ for all ¢. And then there is a neighborhood U
of xy such that for all points x € U, the flow ¢;(z) is defined for arbitrarily large values of t.

For a vector field X and its flow {¢;}, we have

e ¢g =1id

o 4¢y(z) = X(¢¢(x)). Hence in particular %’tzoqﬁt(m) = X(z)

This ends our brief summary of facts about vector fields and flows. We now turn to isotopies
and time-dependent vector fields.

Given an isotopy, {f; : N — N}, we define the corresponding time-dependent vector field
Xt by

d
X(hl@) = 0| f(e).
An integral curve of a time-dependent vector field X; is a curve ~y such that d%’y(s)\s:t =
Xe(v(1))-

Proposition 24. Let N be a compact manifold and let {X;} a time-dependent vector field on
N. Then there is an isotopy {fi:} defined for all t such that

d
%fs(xﬂs:t = Xt(ft(l‘)),
that is, for each x € N the curve v,(t) := fi(x) is an integral curve of X;.

Proof. Consider the vector field X (z,t) := (X;(x), %) on the manifold N x R. Let F; denote
the flow of X. Assume for a moment that {F;} is defined for all t. The flow F; has the form
Fy(z,s) = (G¢(x,s),s +t) for some map G: N xR — N.

Since Fy is a flow, we have F_(Fy(z,s)) = (x,8) = (G_¢(G¢(z, s),s +t),s). So for t, s fixed,
x — Gy(x,s) is a diffeomorphism with inverse y — G_;(y,s + t). We define fi(x) = G¢(z,0).
This is our isotopy. Finally observe that %Gt(:ﬁ, 0) = X¢(Gi(x,0)), i.e. %ft(x) = Xy(f(x)).
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It remains to check that the the flow {F;} is defined for all ¢. In fact it is enough to show
that for any (x9,q) € N xR and any T > 0, the integral curve of X (z,t) = (X;(z), %) through
(x0,q) is defined for all ¢ € [0,T]. This is not immediate since N x R is not compact.

Choose a smooth function p on R such that p has compact support. ie. {t:p(t) # 0} is
compact, and such that p = 1 on [g,q + T]. Consider X,(z,t) = (X;(2), p(t)%). Since N is
compact, the vector field X—p is compactly supported on N x R and X—p =X fort € [q,q + T).
Therefore the integral curves through (xg,q) of the vector fields X_p and X are the same for
the time ¢ € [0, T]. In particular the integral curve of X (z,t) through (z¢,q) is defined for all
t € 0,77. O

Proposition 25. Let {X;} be a time dependent vector field on a manifold N. Suppose for
some xg € N, X¢(xo) = 0 for all t. Then there is a neighborhood U of xog in N, and a family of
maps fr : U — N, t € [0,1] such that fy = id, and for all t we have: %(ft(x)) = X¢(fe(x)),
fi(xo) = xo, ft is 1-1 and (dfy)s is invertible. i.e. f; is a diffeomorphism from U to fy(U).

Proof. Consider X (z,t) = (X(z), %). Since X (7o,t) = (0, %), we have that v(t) = (xo,t) is an
integral curve of X through (zg,0). This curve exists for all £, so there is a neighborhood V' of
(z0,0) in N x R such that the flow of X exists on V for t € [0,1]. Let U = VN (N x {0}). O

Homework Problem 5. Consider the time-dependent vector field X; = t% on S' where
Odenotes the angle. Find the corresponding isotopy {:}.

Homework Problem 6. Consider two 2-forms wg = dx A dy,w; = (1 + 22 + y?)dx A dy on
R2. Find a time-dependent vector field X; such that its isotopy {¢;} satisfies ¢jw; = wp. Hint:
convert everything to polar coordinates.

5. LECTURE 5. POINCARE LEMMA

Having gotten the preliminaries on time-dependent vector fields and isotopies out of the way,
we now start a proof of the Darboux theorem. Recall the statement:

Theorem 26 (Darboux). Let wp,w; be two symplectic forms on a manifold M. Suppose for
some xg € M,wo(xg) = wi(zg). Then there are nmeighborhoods Uy, Uy of xo in M and a
diffeomorphism ¢ : Uy — Uy a such that ¢* w1 = wy.

Proof. (Due to Moser and Weinstein). ~ We define a family of forms w; by w; := twi+ (1 —%)wo,
t € [0,1]. We'd like to construct an isotopy {@¢} : U < M on a neighborhood U of x(? such
that for all ¢ € [0,1] we have pjw: = wo and ¢(zg) = xp, and such that po(x) = x for all
rxeU.

If such an isotopy exists, then %(go;‘f wt) = 0. This equation should impose a condition on the
time-dependent vector field X; generated by the isotopy ¢;. Let us find out what this condition
is.

2Strictly speaking {¢:} is a family of open embeddings and not a family of diffeomorpishm.
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By the chain rule, for a (perhaps vector valued) function G(«, 3) of two real variables we
have

d oG oG
g(G(t,t)) = %(t,t) + %(t,t).

Therefore

d

E(%wt) = %(%wtﬂs:t + %(%wsﬂs:t-

Exercise 6. Show that %((pfws)\szt = Lpz‘(d%wslszt).

Let us now examine the term d%(gpjwt)\s:t.
Recall that by the definition of a Lie derivative, if {1;} is the flow of a vector field Y and if
v is form then

& i) = i (Lyw).
Recall also Cartan’s formula:
Lyv =d(u(Y)v) 4+ o«(Y)dv
An analogous statement holds for isotopies and the corresponding time-dependent vector fields.
Proposition 27. Let {¢;} be an isotopy on a manifold N and let X; be the time-dependent
vector field generated by {¢o}. Then
d

(2) 5 \Prv) = ¢i(Lx,v)

for any form v on N.

Proof. Fix t € [0,1]. Define two operators Qiand Q2 on differential forms Q*(N) on N by

Qi) = S (piv),

Q2(v) = ¢ (Lx,v).
We want to show that Q1 = Q.
Let us show first that Q; od = d o Q); for i = 1,2. Recall that the exterior differentiation d
commutes with pullbacks: do ¢; = ¢} od. Applying % to both sides gives us Q1 od =do Q1.
Similarly since d o ¢} = ¢} od and since Lx, od =do Lx, we get Q2 0d = do Qs.

We next show that Q;(v Au) = Qi(v) Nefpu+piv AQi(u) for i = 1,2. Note that ¢f (v Au) =
(piv) A (@ip). Now let’s differentiate both sides with respect to t. We get

L i nm = (@) A i) + (eiv) A S (o).

Similarly, since Ly, is a derivation,

Lx,(v A p) = (Lx,v) Ap+v A (Lx,p)-
The result for ()2 now follows by applying ¢} to both sides of the above equation.



14 E. LERMAN

We now check that 1 and ()2 agree on zero forms, i.e., on functions. Let f be a function
on N. Then at a point x € N

d

CeiNe) = (o) =

(df (pr(z), Xi(pe(2))) = (Lx, f)(pi(2)) =
¢; (Lx, f)(x).
Therefore Q1 (f) = Qa(f).

Since locally any differential form is a sum of expressions of the form fdx; A --- A z,, the
result follows. O

We conclude that there is an isotopy ¢ such that ¢;w; = wy if and only if

d
0= @:thwt + gof(awt).
Since ¢y is an open embedding, ¢* is injective. Hence the desired isotopy exists if and only if
d

(3) 0= Ltht + Ewt.
Next note that since wy,wq are closed, dw; = d(tw + (1 —t)wp) = tdwi + (1 — t)dwo = 0. Hence
Lx,w = (du(Xt) + o(Xy)d)wy = de(X¢)we. Therefore equation (3) is equivalent to
(4) d((Xp)wr) = wp — wy.

Lemma 28 (Poincaré). Let v be a closed k-form (k > 0) on a subset U of R™ such that 0 € U
and such that for any v € U we have tv € U for all 0 <t < 1.3 Then there is a (k — 1)-form
@ such that v = du.

Let us assume the lemma for a moment. Then there is a one-form p on some neighborhood
of xg in M such that wy — w; = dp on this neighborhood. Since p is defined up to an exact
form we may also assume that pu(zg) = 0.

Since wy — w1 = du, equation (4) is implied by the equation

(5) L(Xt)u}t = U.

Equation (5) has a unique solution X, if the form w; is nondegenerate. Now wy(z) = twi(zo) +
(1 — t)wo(xo) = wo(wo) is nondegenerate for all ¢ € [0,1]. Therefore for all ¢ € [0,1] the form
wi(x) is nondegenerate for all z in a small neighborhood of xj. On this neighborhood we can

define X; by
Xi = (w) M ()
Then ¢(X;)w = p, hence do(Xy)wy = dpp = wo—wy = —%wt. Therefore Lx,w;+ %wt = 0. Note

that since by construction p(zg) = 0, we have X;(z¢) = 0 as well. Therefore on a sufficiently

3Such subsets are called star-shaped.
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small neighborhood of z( the isotopy ¢; of X; is defined for all ¢ € [0,1]. This implies that
vi Lx,wt + ¢f %wt = 0, which, in turn, implies that

d
a(gofwt) =0, forall te(0,1].

Since g is the identity, we conclude that

PIw1 = Ppwo = wo-
This finishes our proof of the Darboux theorem modulo the Poincaré lemma. O
Corollary 29. Suppose wy, w1 are two symplectic forms on M. Let xg € M be a point. Then

there exist open neighborhoods Uy, Uy of xy and a diffeomorphism ¢ : Uy — Uy with p(xz0) = xo
such that ¢*wy = wy.

Proof. Exercise. Hint: recall the linear case first. O

Proof of Poincaré lemma. Consider the radial vector field R(v) := v (in coordinates R(x1, ..., zy) =
ina%i.) Its flow 9y is given by ¢;(v) = tv. Then 1 (v) = v for all v € U and (v) = 0 for
all v. Hence Yjv = v,9jv = 0. Therefore,

1 1 1
v=viv—viw= [ Gid= [ iw)i= [ @)+ i

Since the form v is closed, we have v = fol(wz‘(db(R)V) dt = d(fol(wz‘(c(R)y))dt). So pu =
3 5 (L(R)v) dt is the desired (k — 1)-form. O

6. LECTURE 6. LAGRANGIAN EMBEDDING THEOREM

Recall that a subspace L of a symplectic vector space (V,w) is Lagrangian if (and only if)
dimL = $dimV and for all £,/ € L we have w((,¢') = 0. Equivalently, L is a Lagrangian
subspace if (and only if) L¥ = L.

Definition 30. A submanifold L of a symplectic manifold (M,w) is Lagrangian if and only if
Vz € L, T, L is Lagrangian subspace of (T, M,w(z)), i.e., dim L = £ dim M and w(z)(v,v’) =0
for all v,v" € T, L.

Equivalently we say that an embedding j of a manifold L into a symplectic manifold (M, w)
is Lagrangian if (1) dim L = § dim M and (2) j*w = 0.

Example 13. Let X be a manifold. Then its cotangent bundle T X is naturally a symplectic
manifold with the symplectic form w = wp+x. Recall that if z1,...,z, are coordinates on X
and x1,...,2pn,&1,...,&, are the corresponding coordinates on T X, then in these coordinates
wr+x = »_drx; A d§;. The manifold X embeds into 7*X as the set of zero covectors. This
embedding X in (7*X,wr+x) is Lagrangian.

The Lagrangian embedding theorem asserts that the above example of a Lagrangian embed-
ding is, in an appropriate sense, the only example.
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Theorem 31 (Lagrangian embedding theorem). If X C (M,w) is a Lagrangian submanifold,
then there is a neighborhood U of X in M, a neighborhood U’ of X in T*X (where, as before, we
think of X as zero covectors), and a diffeomorphism ¢ : U — U’ such that (1) p*(wp+x) = w
and (2) p(z) =x for allz € X.

The Lagrangian embedding theorem is due to A. Weinstein. The theorem has a number
of applications. For example it is at the heart of the method of generating functions. Also
it is prototypical for a number of other theorems that are quite useful. Finally it gives us an
excuse to introduce a number of ideas such as vector bundles, tubular neighborhoods, smooth
homotopy invariance of de Rham cohomology, almost complex structures, geodesic flows as
Hamiltonian systems ...

Homework Problem 7. Let X a manifold, and let « denote the tautological (Liouville )
one-form on T*X. Every one-form p € Q'(X) is a map p : X — T*X. Show that p*a = pu.
Use this to show that u(X) is a Lagrangian submanifold of (7*X, d«) if and only if du = 0.

We now begin an introduction of the tools that we will use to prove the Lagrangian embed-
ding theorem.

Vector bundles. Informally, a vector bundle is a family of isomorphic vector spaces parame-
terized by points of a manifold. More precisely,

Definition 32. A smooth map m : £ — M of one manifold onto another is a smooth real
vector bundle of rank £ if the following conditions are satisfied:

e For each € M the set 7~ !(z) = E,, called the fiber above z, is a real vector space of
dimension k.

e For every © € M, there exists a neighborhood U of x in M and a diffeomorphism ¢ :
7Y (U) — U x R¥ such that p(E,) C {y} x R* for all y € U, i.e., the diagram

= HU) U x R¥

\TF\ pri

U

commutes, where pr; is the projection on the first factor, and ¢ : E, — {y} X RF is a
vector space isomorphism for all y € U.
The map ¢ : 71 (U) — U x R¥ is called a local trivialization of E.
For a vector bundle 7 : E — M, the manifold F is called the total space and M is called
the base.

Given a vector bundle 7 : E — M we will often say that F is a vector bundle over M.

Example 14. Let M be a manifold.
The tangent bundle TM = M is a vector bundle of rank k = dim M over M.
The cotangent bundle T*M — M is a vector bundle over M of rank k£ = dim M.
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M x R™ — M is a vector bundle of rank n over M called the trivial vector bundle.

Let E =5 M and F =2 M be two vector bundles over a manifold M. A morphism (map)
of vector bundles is a smooth map ¢ : E — F such that for all x € M we have (E,) C Fy,
and the restriction of ¢ to the fibers ¢ : E, — F, is a linear map. A morphism of vector
bundles which has an inverse is called an isomorphism.

Example 15. Let (M,w) be a symplectic manifold. The map w! : TM — T*M defined by
v — w(m(v))(v,-) is an isomorphism of vector bundles.

Example 16. If (M, g) is a Riemannian manifold (i.e. if g is a Riemannian metric on the
manifold M), the map g* : TM — T*M defined by v — g(7(v))(v,-) is an isomorphism of
vector bundles.

Definition 33. A vector bundle F' — M is a subbundle of a vector bundle £ — M if F
is a subset of E and if the inclusion ¢ : F' — F is a map of vector bundles. Equivalently, a
subbundle of a bundle F is a pair (F, j) where F' is a vector bundle and j : F' — F an injective
map of vector bundles.

Proposition 34. Suppose m : E — M 1is a vector bundle and N — M 1is an embedded
submanifold, then E|x := 7~ *(N) is a vector bundle called the restriction of E to N.

Proof. The map w is a submersion. O

The above construction can be generalized as follows. Let m : E — M be a vector bundle and
let f: N — M be a smooth map of manifolds. We define the pull-back bundle f*E — N to
be the set

fTE={(z,e) e Nx E| f(z) =7(e)}
with the projection f*E — N given by (z,e) — x. It is not hard to see that f*E is a manifold
and that it is, in fact, a vector bundle with a fiber (f*E); = Ey(y).

Example 17. Let N — M be an embedded submanifold. The restriction of the tangent
bundle of M to N is the bundle TyM := TM|y = [] 7M. The tangent bundle TN is a

xeN
subbundle of Ty M.

Example 18. Let us make the above example more concrete. Consider the round sphere
S%2 C R3, S? = {z € R3||x|? = 1}. The restriction of the tangent bundle of R? to the sphere
is TgxTR3 = {(z,v) € S? x R?}, and tangent bundle to the sphere is TS? = {(z,v) €
SZxR3|x-v=0}.

Example 19 (conormal bundle). Let N C M embedded submanifold. The conormal bun-
dle v*(N) is the subbundle of T* M|y defined by

VI(N) ={{€T"M|n : &1, ,n =0}

It is not hard to see that the conormal bundle is a vector bundle by studying it in coordinates.
In more details, let n = dim N and m = dim M. Since N is an embedded submanifold of M, for
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every point p of M there are coordinates x1, ...,z on M defined on some open neighborhood
U of p such that UNN = {zp41 = Xpy2 = -+ = 0}. Let x1,...,2m,&1,...,&n be the
corresponding coordinates on T*M. Then

Vi (N)Inew = {1 = pp2 = =0, =& = =&, =0}

Therefore v*(N) is a submanifold of the cotangent bundle T* M. It is easy to check it is in fact
a subbundle of T* M |y.

Note that the dimension of the conormal bundle is dimv*(N) =2m — (m —n) —n=m =
% dimT* M. In fact, the conormal bundle is a Lagrangian submanifold of T* M. This is easy to
see in coordinates: wrsy = Y daiAdE; and T, ¢)(V*(N)) = spcm{a%l, A %, ag%ﬂv ol 65%
Definition 35. Let m: E — M be a vector bundle. A section s of the vector bundle F is a
map s : M — FE such that 7(s(x)) = z for all x € M.

Example 20. A vector field on M is a section of of the tangent bundle TM. A one-form is a
section of the cotangent bundle T*M.

For every vector bundle E — M, there is a section called the zero section:
0:M—FE
r+——0, zeroin FE,
We will often refer to the image of the zero section as the zero section.

Theorem 36 (Tubular neighborhood). If N < M is an embedded submanifold, there erists
a neighborhood U of N in M, a meighborhood Uy of the zero section in the conormal bundle
v*(N) and a diffeomorphism ¢ : U — Uy such that ¢ (x) = = for all x € N.

We will prove the theorem in the next section.

Normal bundles. The statement of the tubular neighborhood theorem above is a little non-
standard. In this subsection we describe the more standard statement and the concepts asso-
ciated with it.

We start by defining local sections. A local section of a vector bundle £ — M is a section
of E|y for some open subset U of M. Local section always exist, for given a sufficiently small
subset U of M the restriction E|y is isomorphic to U x R (by definition of a vector bundle)
and U x R¥ — U has lots of sections.

Next we define a Whitney sum of two vector bundles. There are two equivalent ways of
defining the sum. Here is one. Suppose E ZE, M and F =5 M are two vector bundles. Then

we have a vector bundle E x F Z2*™F, M x M. The manifold M embeds into M x M as the

diagonal:
AN:M— Mx M,
x+— (z,)

We define the sum E @ F — M to be the pull-back A*(E x F'). Note that the fiber above x
ofE®Fis (E® F)y={(e,f) € EX F |ng(e)=np(f) =z} =E, ®F,.
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Having defined direct sums, we can now try and define quotients. Let £ — M be a vector
bundle and let F' be a subbundle of E. If we can find a subbundle F’ of FE such that E = F& F’
then it would make sense to define the quotient F/F to be F’.

Now suppose that F has a metric g, that is a smoothly varying inner product on the
fibers E, of E. Here “smoothly varying” means : if s,s’ are any two local sections, then
x — g(z)(s(x),s'(z)) is smooth function of x. Using partitions of unity one can show that
metrics always exist.

Given a vector bundle F with a metric g and a subbundle F', we define the complementary

bundle F9 by F9 = [[ F¥, where FY is the orthogonal complement of F}, in E, with respect
zeM
to the inner product g(z). One shows that F'9 is a vector bundle and that £ = F @& F9. The

proof that F9 is a vector bundle amounts to doing Gram-Schmidt.
Another way to define quotients is to define E/F to be

I1 E./F-.

zeM

One then needs to prove that E//F is a vector bundle. This is a more invariant way of thinking
about quotients.

We can now define normal bundles. Let M be a manifold and let N — M be an embedded
submanifold. The normal bundle of N in M is, by definition

v(N) = TyM/TN.

This is a definition in the category of differential manifolds. Note that the fiber of the
conormal bundle v*(N), = T, N° is the annihilator of T, N in T;) M. Now given a vector space
V and a subspace W, the annihilator W° is naturally isomorphic to (V/W)*. Therefore the
fibers of the normal and of the conormal bundle are dual vector spaces.

Given a vector bundle £ — M one can define the dual bundle E* — M whose fibers are
dual to the fibers of E. The normal and the conormal bundles of an embedding are an example
of this. Another example are the tangent and the cotangent bundles of a manifold.

If M is a Riemannian manifold with a metric g, then, tautologically, the tangent bundle T'M
has the metric g. The Riemannian normal bundle of N is the bundle

vg(N)=TNY, vg(N),=T,N? forallxzeN.

This definition depends on the metric and defines v4(/N) as a particular subbundle of T M.
Recall that the metric ¢ defines the bundle isomorphism ¢f : TyM — TNM; it is given by
(z,v) — g(z)(v,-). Tt is easy to see that (¢f)~'v*(N) = TN9 = y,(N). Since the preimage
of a subbundle under a bundle isomorphism is a subbundle this provides a proof that the
Riemannian normal bundle is a vector bundle.

A more standard version of the tubular neighborhood theorem reads:
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Theorem 37 (Riemannian tubular neighborhood theorem). If N — M is an embedded sub-
manifold of a Riemannian manifold (M, g), there ezists a neighborhood U of N in M, a neigh-
borhood Uy of the zero section in the normal bundle vy(N), and a diffeomorphism ¢ : U — Uy
such that ¢(x) = x for all x € N.

7. LECTURE 7. PROOF OF THE TUBULAR NEIGHBORHOOD THEOREM

Homework Problem 8. Let m : E — M be a vector bundle. Then M embedds into E as
the zero section. Suppose o1 and o3 are two closed k-forms on E, (k > 0), such that for every
x € M, o1(x) = o9(x). Show there is a (k — 1)-form v on F such that

1. 01 —0o9 =dv

2. v(x)=0 forallze M
Hint: Let 0 = 01 —09. Consider p; : E — E, t € [0,1], given by p;(v) = tv. Then po(v) = m(v)
and so pjo = 0 while pjo = 0. Next write 0 = pjo — pjo = ...

Our goal for this lecture is to prove Theorem 36, the tubular neighborhood theorem.

Proof of the tubular neighborhood theorem. Choose a Riemannian metric g on M. This pro-
duces a metric g* on the cotangent bundle (the so called dual metric) as follows. Recall that
g% : TM — T*M an isomorphism of vector bundles defined by ¢*(z,v) = g(z)(v,-), z = 7 (v).
Define the inner product g*(x) on TxM by g*(z)(€,1) = g(x)((g)~1(©), (¢%)~L(n)) for &,n €

T:M.
Let us see what this metrlc looks like in coordinates. Let x1,...,x, be coordinates on M.
Define g;j(x) = g(2) (55, 52 ). Then

The reader should check that the matrix (g% (z)) defined by
9"(x) = ¢* (z)(da;, dz;)
satisfies ), g (x)g;r(x) = ik, i.e. the matrices (g;;(z)) and (¢"/(z)) are inverses of each other.
Define a function H : T*M — R by H(z,&) = 2¢%(2)(&, &) for £ € T M; it is the so called
“kinetic energy” function.
Recall that the cotangent bundle T*M has a natural symplectic form w = wp«); and that
w = —da, where « is the tautological 1-form. Recall also that in coordinates w = dx; A d&;.
The function H and the symplectic form on T*M define a vector field X by the equation
t(X)w = dH. The flow of X is called the geodesic flow of the metric g. We will see that

projections onto M of integral curves of X “minimize” distances in M, i.e. they are geodesics.*
For this reason we will refere to the flow ¢; of the vector field X as geodesic flow.

4The geodesics are extremals of the distance funcitonal and not necessarily the local minima hence the
quotation marks.



SYMPLECTIC GEOMETRY AND HAMILTONIAN SYSTEMS 21

Let us compute the vector field X in coordinates. We have dH = d(3 >0 g (2)&&5) =

é Z 1,5,k 8zk Szfjdwk +3 ZZ] gngdg’b +3 Zz] gwgldfj 2 Z 4,5,k 6xk gﬁg]dxk + Zz N gz]&dg] since
g7 = g7t Consequently,

1 dg¥ 0
X — lk - = Y o pum—
(.6)=>_9 52 > S i e
i,k Z,jJi‘
Proposition 38. For any w € T, M we have
dr(X (z, g (z)w)) = w.
Proof. One can give a coordinate-free proof of this fact, but a computation in coordinates
is very simple. We write w = Zwla%l' Then ¢ (z)w = ¢*(z)(> wza%l) = > gri(z)widz;.

Therefore
7 7 6
ahr()f(ac,gﬁ(a:)w))=Zg’f<x><gjj = g™ @)gi(x wy -
ik ik,

= Z 5k1wl Z k@wk

]
For every s # 0, we have a diffeomorphism p, : T*M — T*M defined by ps(z, &) = (x, s§).
Lemma 39. X (ps(z,§)) = dps(sX(x,§))

Proof. We compute in coordinates. Since ps(z1,...,Zn,&1,...,&n) = (T1,...,Zn, 881, ..., 8En)
we have 5 5 5 5
dﬂs((%k) i and dps(ﬁék) = S og,
Therefore,
89] 0
zk v 2 2¢ ¢ 7
while
9qti
dps(sX (.€)) = sdps(X (2. €)) = sdp, Zg”“&— -3 2 )
0 89”
=3 ik 50 3 Eis—).
Q_9"5,, g y)
U

Corollary 40. Let v¢(t) denote the integral curve of of the vector field X through a covector
§eT*M (i.e., suppose v¢(0) =& and %vg(t) = X(7(t)).) Then ps(ye(st)) = vse(t). In terms
of the geodesic flow ¢y we have

ps(9st(€)) = de(ps(§))-
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Proof. Since pg(7¢(s,0)) = ps(§) = s& and since integral curves are unique, it is enough to
check

& pulelst)) = X (s (e(s)).

We compute:

@ pu(ae(st)) = dpas TE (s1)) = dpy(sX (3e(51))) = X (s (51))

by Lemma 39. O

We can now define the exponential map exp* : T*M — M (determined by a metric g):

exp”(§) = m(#1(¢)),

where 7 : T*M — M 1is the bundle projection and ¢ is the time 1 map of the geodesic flow.
Note that if we want to emphasize the base point of a covector & we would write

exp*(l’, f) = 7T(¢1(‘T7 f)),

where x = 7(§), or, equivalently £ € T M.
Similarly we define exp : TM — M by

exp(a,v) = 7 (1(z. g (@)v))

for v € T, M, where T'M g_n) T*M is the usual metric induced isomorphism of vector bundles.
Thus exp = exp* ogF.

Since X (x,0) = 0 we have ¢.(z,0) = z for all z € M. Hence the flow ¢:(x,&) is defined up
to time 1 in some sufficiently small neighborhood of the zero section in T*M. We conclude
that the maps exp* and exp are defined in some neighborhoods of the zero sections.

Next we compute the differential of the exponential map exp at the points of the zero seciton.
We start with an observation that if 7 : E — M is a vector bundle and (z,0) € E is a point
on the zero section then the tangent space T, o)E is naturally isomorphic to the direct sum
T.M & (ToE,) = T,M & E, since both M and the fiber E, are submanifolds of E passing
transversely through (z,0). (There is no such natural splitting at points e € E off the zero
section because there is no subspace of T, E' naturally isomorphic to Ty ()M unless 7(e) = e.)
In particular we have a natural identification

T(x,[)) (TM) ~T . M®T, M.

Proposition 41. The differential of the exponential map exp : TM — M at the points of the
zero section is given by

d(exp) (x, 0)(v & w) = v+ w
forallvowe T,M &T,M.
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In particular the proposition asserts that with respect to a basis of T, M the differential
d(exp)(z,0) is given by a matrix of the form

zero section fiber
TeM TaM

1 01 0

0 10 1

Proof. Since exp(x,0) = z for all x € M, dexp |sero section = idr,p. We now argue that
dexp |gber = id7, 0 as well. Fix w € T, M. We want to show that %\tzo exp(z, tw) = w. Now,

o expla, tu) = Slcomé(z, ¢4 ()(1w)

_ %It:oﬂ(dn(x, tg (z)w))

d
E\t:()ﬂ(pt(@(x,gﬁ(x)w))) ( by Corollary 40)
d .
= E\tzoﬂ(@(x,gﬁ(x)w))) (since 7o p =)
= dr(X (z,¢*(x)w) = w (by Proposition 38).
]
The following is the key point.

Corollary 42. exp|p,n @ TeM — M is a local diffeomorphism on a neighborhood of 0 in
T.M.

Proof. This follows from the inverse function theorem since d(exp |z,ar)(0) = id. O

Proposition 43 (Tubular neighborhood theorem, version 3). Let N be an embedded subman-
ifold of a Riemannian manifold (M, g) Then the restriction of the exponential map to the nor-
mal bundle exp : TN9 — M s a diffeomorphism on some neighborhood of the zero section.
Moreover exp(z) = x for all x € N.

Example 21. Consider the round sphere S? ¢ R3. Let g be the standard inner product on
R3. Tt is easy to see that (T'S%)9 = {(x,v) € S? x R*|v = Az, for some A € R}. Check that
the exponential map exp : (T'S?)9 — R3 is given by (z,v) — z +v. It is a diffeomorphism for
v sufficiently small (less than the radius of the sphere).

Note that the result is false if N is injectively immersed but not embedded. For example
take M = R? and let N = (0,1) be immersed as figure eight. The image of N has no tubular
neighborhood.

Proof of the tubular neighborhood theorem, verison 3. Note first that at the points of the zero
section the tangent space to the normal bundle 7{, o)(7'NY) is isomorphic to T N @ (TN )9 ~
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T,M. Note also that d(exp)(x,0) : TN & (I, N)9 — T, M is given by (v,w) — v + w.
Hence d(exp)(z,0) is an isomorphism for all x € N. Therefore exp is a local diffeomorphism in
a neighborhood of every point of the zero section, i.e. for any z € N, there exists neighborhoods
O, of z in TNY and O’,, of z in M such that exp : O, — O, is a diffeomorphism.

To finish the proof we need a topological lemma.

Lemma 44. Suppose N C M embedded submanifold and suppose there is a smooth map i :
TNY9 — M such that

1. ¥(x) =x for allz € N, and
2. 1 is a local diffeomorphism in a neighborhood of any x € N.

Then there exists neighborhoods Uy of N in the normal bundle TNY, U of N in M such that
YUy — U is a diffeomorphism.

Proof. See Broker & Jéanich, Introduction to Differential Topology, Lemma 12.6. O
This finishes the proof of version 3 of the tubular neighborhood theorem. U

Note that since the “musical” isomorphism ¢* : TM — T*M identifies the metric normal
bundle TN9 with the conormal buncle v*(N), the first version of the tubular neighorhood
theorem, Theorem 36, follows as well. O

Exercise 7. Let L C (M,w) be an embedded Lagrangian submanifold. Show that v*(L) ~
T*L. If you get stuck see the next lecture.

8. LECTURE 8. PROOF OF THE LAGRANGIAN EMBEDDING THEOREM. ALMOST COMPLEX
STRUCTURES

Recall that if (M,w) symplectic manifold, an embedding i : L — M is Lagrangian iff
dim L = %dimM and i*w = 0.

Lemma 45. Ifi: L — (M,w) is a Lagrangian embedding, then the conormal bundle of L in
M is isomorphic to the tangent bundle: v*(L) ~ TL.

Proof. Recall that w® : TM — T*M defined by w!(x,v) = w(z)(v,-) is an isomorphism of
vector bundles. For all z € L and for all v,w € T, L, we have 0 = w(z)(v,w) = (w(z)(v), w).
Therefore w#(T,L) is contained in the set {¢ € T*M |€|7,r = 0}, i.e. w¥(TL) C TL°. On
the other hand, dimT,L° = dim M — dim L = dim L. Hence w#(T,L) = T,L°. Therefore
w!: TL — TL° = v*(L) is an isomorphism. O

Theorem 46 (Lagrangian embedding, version 1). Let (Mp,wp), (M1, w1) be two symplectic man-
ifolds. 19 : L — My,i1 : L — My be two Lagrangian embeddings with respect to wy and wiy
respectively. Then there exist neighborhoods Uy of ig(L) in My, Uy of i1(L) in My and a
diffeomorphism ¢ : Uy — Uy such that p*wi = wo and @(ig(x)) = i1(x) for all z € L.

Here is an equivalent version.
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Theorem 47 (Lagrangian embedding, version 2). Ifi: L — (M,w) is a Lagrangian embed-
ding, then there ezist neighborhoods U of i(L) in M, Uy of L in T*L and a diffeomorphism
¢ : Uy — U such that p(x) =i(x) for all x € L and such that ¢*w = wr+1, where wy~r, is the
standard symplectic form on the cotangent bundle T L.

We will see later on that Lagrangian manifolds arise in the study of completely integrable
systems. Here is another way in which Lagrangian manifolds come up. Suppose (Mj,w;) and
(M, w9) are two symplectic manifolds with dim M; = dim My. Suppose f : M; — My a
smooth map. We have two obvious projections

My x Mo
™1 2
M, / \ My

Define w = mjw; — miws. (This form is also written as wy; @ (—ws) or simply as w; — wg). The
form w is symplectic (check this!).

Recall that the graph of f is the set graph(f) = {(m, f(m)) € M; x Ms}; it is a subman-
ifold of M; x Mjy. Clearly its dimension dim graph(f) is dim M; which is half the dimension
of the product dim(M; x M3). The tangent space to the graph T(,, ¢(m))(graph(f)) is the
subspace {(v,u) € TinMi X TymyMa|u = df(v)}. Now for (v,df(m)(v)), (w,df(m)(w) €
Tm, £(m))(graph(f)) we have

ol S (0, 7o), (o, dfw) = (efr = mgn) (m, £ () (v, dF0), (w0, df )
= wi(m)(v, w) — wa(f (m))(dfv, df w)
= wi(m)(v, w) — (f*w2)(m) (v, w),
where we wrote dfv for df (m)v and dfw for df (m)w. Hence graph(f) is a Lagrangian subman-
ifold of (M x My, miwy — myws) if and only if w; — f*we = 0, i.e., iff f is symplectic.

Proof of Theorem 46. By Lemma 45 and by the tubular neighborhood theorem, we may assume
that My = M; = TL and that wp, wy are two symplectic forms on T'L with wp|r, = 0 and
wi|r = 0. We would like to find neighborhoods Uy and Uy of L in T'L, and a diffeomorphism
¢ : Up — Uy such that |1, = id, and ¢*wi = wy.

Example 22. To appreciate the kind of a problem that we are confronting consider L = R2.
Then TL = R? x R? = R*. Let (1, 22, y1,%2) be coordinates on T'L. Suppose wy = dz1 Ady; +
dxo Ndys and wy = dzy Adys + dxo Ady;. These forms are symplectic and w;|;, = 0 for i =0, 1.

The proof of the theorem is a modification of Moser’s deformation argument. We first prove
it under an extra assumption:

(6) wi(z) =wo(z), VrelL,

i.e. for all x € L the forms wo(z) and wi(z) agree on T(, oy(T'L). Later on we will see that such
an assumption is justified (Proposition 53).
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Let us now assume that (6) holds and let us look for a one-form 7 such that 7(z) = 0 for all
x € L and such that w; — wy = dr.

Consider p; : TL — TL defined by p:(x,v) = (x,tv). Then p; = id, and for all (z,v) € TL
we have po(z,v) = (z,0) and pt(z,0) = (2,0) for all £. Therefore pfw; = 0 and pjw; = w; for
1 = 1,2. We now compute, as in the proof of the Poincaré lemma:

1
* d
w1 —wo = pi(w1 —wo) — pp(w1 — wo) = / (o Pr (W1 —wo))dt.
Let R(z,v) = & ‘ oPt(z,v); it is (the analog of) the radial vector field. Then
1
W1 —wy = / pr(LR(wl — o.)[))) dt =
0

1
/ (P (du(R) + U(R)d) (w1 — wo)) dt =

1
/ prdiu(R) (w1 — wp) dt =
0

[aey

d wl—w)))dt:
0
1

d ( (R)(wl - u)o)) dt.

We define 7 = fol p¥(L(R) (w1 — wp)) dt.

For all z € L we have (w1 —wp)(x) = 0 by the extra assumption. Since pi(z) = (x) for all
x € L, we have R( ) = 0. Hence ¢(R)(w1 —wp))(z) = 0 and so [p(¢(R)(w1 — wp))](x) = 0.
Consequently 7( <f0 ) (w1 — wo)) dt) (0)=0forall z € L.

Next, let wy = twy + (1 — t)wg, t € [0,1]. For x € L and for all t € [0,1] we have w;(z) =
twi(z) + (1 — t)wo(xr) = wi(x) by (6). Hence the form wi(z) is nondegenerate for all ¢t and
all x € L. Consequently there is a neighborhood W of L in T'L on which the form w; is
nondegenerate for all ¢ (here we used that [0,1] is compact). Therefore on W we can find a
time-dependent vector field X; such that o(X;)w; = —7: we set X; := ((w¢)))"'(—7). Then
Xi¢(x,0) = 0 for all x € L. Hence the flow ¢; of X; exists for all ¢ € [0,1] on a perhaps
smaller neighborhood W/ C W. Consequently du(X¢)w; = —dr = —(w1 — wp) = —%wt. It
follows that Lx,w; + %wt = 0 and hence 0 = ¢; Lx,w; + c,of%wt = %(gpjwt) = 0. Consequently
piwe = ppwo = wo for all . We finally conclude that ¢pjwi = wg where the open embedding ¢4
is defined on some neighborhood of L in T'L.

This finishes the proof of Theorem 46 modulo the simplifying assumption that (6) holds. O

We now start the work required to show that the assumption is justified.

Almost Complex Structure.
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Definition 48. Let V be a real vector space. A linear map J : V. — V such that J? = —id
is called a complex structure on the vector space V.

Example 23. Let V = C". The map J(z) = v/—1z is a complex structure.

If a real vector space V has a complex structure J, then V can be made into a complex
vector space by defining (a + +/—1b)v = av + bJov for all v € V, a,b € R.

Example 24. The point of this example is to observe that a symplectic vector space always
has a complex structrue. In the next lecture we will see a proof that does not use the exitence
of symplectic basis.

Let (V,w) be symplectic vector space, let e1, ..., en, f1,..., fn be a symplectic basis (so that
w =y e’ A ffin terms of the dual basis ef,..., e}, f1',..., fr). Define J : V' — V on the basis
by Je; = fi, Jfi = —e;. Then clearly J? = —id.

Note that w(e;, Je;) = w(e;, fi) = +1 and that w(f;, Jfi) = w(fi, —e;) = +1 hence for all
v € V we have w(v,Jv) > 0 and = 0 if and only if v = 0. Let g(v,w) = w(v, Jw). We claim
that g is a positive definite inner product. Since w(Je;, Jf;) = w(fi, —e;) = w(e;, f;) we have
w(Jv, Jw) = w(v,w) for all v,w € V. Hence g(w,v) = w(w, Jv) = w(Jw, J?v) = w(Jw, —v) =
w(v, Jw) = g(v,w), i.e. g is symmetric.

We conclude that every symplectic vector space (V,w) has a complex structure J such that
g(v,w) = w(v, Jw) is a positive definite inner product. Such a complex structure is called
compatible with the symplectic form w.

Remark 49. Let (V,w) be a symplectic vector space and let J : V. — V is be a complex
structure. It is not hard to see that g(v,w) := w(v, Jw) is a symmetric bilinear form if and
only if J is symplectic, i.e., J*w = w.

Indeed suppose g is symmetric. Then w(v, Jw) = g(w,v) = g(v,w) = w(w, Jv) = w(Jv, —w) =
w(Jv, J?w) for any v,w € V. Since J is onto, any u € V is of the form v = Jw for some w.
Hence w(v,u) = w(v, Jw) = w(Jv, J2w) = w(Jv, Ju).

Conversely, suppose w(v,u) = w(Jv,Ju) for all v,u € V. Then g(w,v) = w(v,Jw) =
w(Jv, J?w) = w(Jv, —w) = w(w, Jv) = g(w,v).

Definition 50. An almost complex structure J on a manifold M is a vector bundle map
J :TM — TM such that J? = —id.

Clearly every complex manifold has an almost complex structure. Note however that there
are manifolds with almost complex structures which are not complex manifolds.
We will prove in the next lecture:

Theorem 51. Every symplectic manifold (M, ) has an almost complex structure J compatible
with T, i.e. there exists an almost complex structure J on M such that g(-,-) == w(-,J-) is a
Riemannian metric on M

We end this lecture with a prototypical application of the existence of compatible (almost)
complex structures.
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Lemma 52. Let (V,w) be a symplectic vector space, let L C V be a Lagrangian subspace
and let J a complex structure compatible with the symplectic form w. Then the subspace JL
is also Lagrangian, L & JL = V and the linear map ¢ : L & JL — L* ®& L defined by
Y(v @ w) = w(w, ) v satisfies Y*wy = w, where wy is the standard form on L & L* (c.f.
Proposition 18).

Proof. Since w(Jv, Jw) = w(v,w) for all v,w € V, the subspace JL is Lagrangian. (Recall that
by Remark 49 the bilinear form g(v,w) := w(v, Jw) is symmetric if and only if w(Jv, Jw) =
w(v,w)).

It remains to show that L N JL = {0}. Suppose u € LN JL. Then u = Jv for some v € L.
We have w(v, u) = w(v, Jv) = g(v,v) > 0. But u,v € L so we must have w(v, u) = 0. Therefore
g(v,v) =0, hence v =0 and so u = JO = 0 as well. O

Homework Problem 9. Let M be a compact manifold. Suppose that wg and w; are two
symplectic forms on M such that w; — wy = dr for some 7 € QY(M). Prove that if the form
wt = twy + (1 — t)wyp is symplctic for all ¢ € [0, 1] then there is a diffecomorphism f: M — M
such that f*w; = wyo.

Homework Problem 10 (de Rham cohomology). Let M be a manifold. As usual let Q¥ (M)
denote the set of differential k-forms on M and let d : QF(M) — QFF1(M) denote the exterior
differentiation. The k-th deRham cohomology group H¥(M) is by definition the quotient
ker{d : QF(M) — Q¥ (M)}/im{d : QF=1 (M) — QF(M)}. For 7 € QF(M)with dr = 0, let
[7] denote the class of 7 in H*(M).

1. (Functoriality) Show that given a smooth map f : N — M, the map in cohomology
H(f) :: H*(M) — HF(N) given by H(f)([r]) = [f*7] is well-defined. Show also that
H(fog)=H(g)oH(f)

2. Prove that if M is connected, then H°(M) = R.

3. Prove that

. R, k=0,1

@ H(S)—{O, L
Hint: The map Q'(S') — R, a — [ @ may be useful.

4. (Smooth homotopy invariance) Two smooth maps fy, fi : M — N are smoothly ho-
motopic iff there is a smooth map F : [0,1] x M — N such that F(1,z) = fi(z) and
F(0,z) = fo(x). Show that if f; and fy are homotopic, then H(fy) = H(f1). Hints:
Define is : M — R x M by is(m) = (s,m). Then F(s,z) = F(is(x)). Show that there
are maps Q. : (R x M) — QF~1(M) such that d(Qx7) + Qxr1(d7) = iiT — iT for any
7 € QF(R x M) by considering fol %(iir) dt. Conclude that H(i1) = H(ip). Finish the
proof by observing that fs(z) = (F ois)(z),s = 0,1 and use functoriality.
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9. LECTURE 9. ALMOST COMPLEX STRUCTURES AND LAGRANGIAN EMBEDDINGS

The goal of this lecture is to finish the proof of the Lagrangian embedding theorem. We
accomplish it by proving the existence of an almost complex structure compatible with a given
symplectic form (Theorem 51) and by proving Proposition 53 below.

Proof of Theorem 51. We first consider the proof in the setting of vector spaces. Let V be a
vector space and T a skew-symmetric nondegenerate bilinear form. Choose a positive definite
inner product g on V. We have two isomorphisms:

VSV ve (v,
and
gtV =V v g, ).
Let A= (¢g%)~!o7#. Then for any v,w € V we have
g(Av,w) = (g7 Av,w) = (t7v,w) = 7(v,w) = —7(w,v) = —g(Aw,v) = —g(v, Aw),

i.e., A = —A* where the adjoint is taken relative to the metric g. Therefore —A? = AA* is
diagonalizable and all eigenvalues are positive. Let P be the positive square root of —A2. For
example we can define P by

1
2my/—1

where /z is defined via the branch cut along the negative real axis and + is a contour containing
the spectrum of —A2. It follows that P commutes with A and that

(AP™12 = A2P72 = A%(—A?) = —1.

L (—A2 =2 1Zdz,

The map J = AP~ is the desired complex structure.

Note that the same argument works if we consider a symplectic manifold (M, 7). We choose
a Riemannian metric g on M and consider a vector bundle map A = (¢7)~!' o 7. We define
P :TM — TM by essentially the same formula: for x € M the map P, : T, M — T, M on the
fiber above z is given by

1
P=—
DY VAN
Note that since the spectrum of A, varies with the base point x and since we don’t assume
that the base is compact, we have to let the contour ~, vary with x as well to make sure that

the spectrum of — A2 lies inside 7,. The map P so defined is a smooth vector bundle map that
commutes with A and we set the complex structure J to be AP, O

(—Ag — 2) " zdz,

Proposition 53. Let wi and we be two symplectic forms on a manifold M. Suppose L C M
1s a submanifold, which is Lagrangian for both wy and ws. Then there exist neighborhoods
Uy, Uy of L in M and a diffeomorphism F : Uy — Uy such that F‘L = id and such that
(F*wy)(z) = wi(x) for all x € L.
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Proof. Suppose (V,w) is a symplectic vector space, L C V is a Lagrangian subspace and
J : V. — V is a complex structure, compatible with w. Then the image JL of L under J is
perpendicular to L with respect to the inner product g(-,-) = w(-,J:): JL = L9. Therefore
V = L@ JL. Moreover, since w(J+, J:) = w(+,+), JL is a Lagrangian subspace of V. Recall that
the map A: L& JL — L* @ L given by A(l,') = w(-,I") ® [ has the property that A*wy = w
where wy is the canonical symplectic form on L* @ L (cf. Example 8 and Proposition 18).

Suppose now that wi,ws are two symplectic forms on a vector space V', and the subspace
L C V is a Lagrangian with respect to both forms. We want to construct an isomorphism
F:V — V with F|, =idy, such that F*ws = w;.

Let J; be a complex structure on V compatible with w; and let J» be a complex structure
on V compatible with wy. We define F to be the composition (L@ J;L,w;) — (L& L*,wy) —
(L ® JoL,wsy). The map F' has the desired property.

We now adapt this proof to the setting of manifolds. Choose almost complex structures Ji,
Jo compatible with the symplectic forms wi, wy respectively. Let g;(-, ) = wi(+, J;-) (i = 1,2)
be the corresponding Riemannian metrics so that the subbundle J;T'L is the perpendicular
subbundle T'LY% (i = 1,2). By the tubular neighborhood theorem there are neighborhoods Uj;
of L in M and UZ-0 of L in T'LY9 and such that the exponential maps exp;, : UZ-O — U; determined
by the metrics g; are diffeomorphisms (i = 1,2).

We also have vector bundle isomorphisms ¢; : J;(T'L) — T*L defined by ¢;(z,v) =
(2, w;i(x)(-,v)) for v € J;(TL),. Define f : JJTL — JoT'L by f = w5 " 0 ¢1. Denote by f(x)
the restriction of f to the fiber above xz; then f(z) : J1T,L — JoT,L. As in the vector space
case for every point z € L the map id® f(z) : T,M =T, L ® LW T,L — T, L ® JoT,L =T, M
satisfies [(id @ f(z))*ws2](z) = wi(x).

Define F : Uy — M by F = expyof o (exp; |y,) 7'

J1TL N JoTL

(expy) ™1 expy

By construction we have that F'|;, = id;,. We are done if we can show that for any point x € L
the differential dF'(x) : T, M — T, M satisfies (dF (z)*w2)(z) = wi(x). We therefore need to
compute the map dF'(x). Note that since the differentials dexp,;(0) : T,M — T, M, i = 1,2,
are the identity maps, we need only to compute df (z) and prove that it is symplectic.

Now suppose £ — B, E’ — B are two vector bundles over B and suppose A : £ — E’
a vector bundle map. Let’s compute the differential dA of A at the points of the zero section.
We have T(, o)E = T, B ® E;. The map A restricted to the zero section is the identity, and
A restricted to the fiber E, is a linear map which we denote by A(z) : E, — E/. Therefore
dA(z,0) : T,B® E, — T, B ® E! is simply id ® A(z). Applying this argument to the map f
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we see that df (z) = id ® f(z). Since (id & f(x))*w2(z) = wi(z) by construction of f, we are
done. g

This finishes the proof of the Lagrangain embedding theorem.

10. LECTURE 10. HAMILTON’S PRINCIPLE. EULER-LAGRANGE EQUATIONS

10.1. Classical system of N particles in R>. .

Consider a mechanical system consisting of N particles in R3 subject to some forces. Let
z; € R? denote the position vector of the ith particle. Then all possible positions of the system
are described by N-tuples (z1,...,zy) € (R®)Y. The space (R?)Y is an example of a config-
uration space. The time evolution of the system is described by a curve (z1(t),...,zn(t)) in
(R3)N and is governed by Newton’s second law:

d?z; . .
mzﬁ = Fi(z1,...,oN, %1, ..., N, 1)
where F; denotes the force on ith particle (which depends on the positions and velocities of all
N particles and on time), 2; = %, and m; denotes the mass of the ith particle.

Let us now re-lable the variables. Let gs;, ¢3;+1 and q3;+2 be respectively the first, the second

and the third coordinate of the vector x;, ¢ = 1,... ,N. The configuaration space is then R",
n = 3N and the equations of motion take the form

dQQa . .
(8) mOé—:FOé(Qh"'aQTLana"'aQnat)7 1§a§n

Let us now suppose that the forces are time-independent and conservative, that is, that
there exists a function V' : R” — R such that F,,(q1,---,qn,G1,--->Gn,t) = Falqi,--.,qn) =

_%(Qh v 7Qn)
Example 25. For example if N particles interact by gravitational attraction, V(z1,...,2x) =

_ m;m; . .
VD iz EEEAE where v is a universal constant.

Then equation (8) takes the form

d?qq oV
9) maW:_a—qa(QL'”vqﬂ)) I<a<n.
We now rewrite equation (9) as a first order ODE by doubling the number of variables. Let
us call the new variables v,:

(10) e

dva oV
{ma% = _@(QL cee uQn)
at — Ya

A solution (g(t),v(t)) of the above equation is a curve in the tangent bundle TR™ such that
G(t) = v(t). The tangent bundle TR" is an example of a phase space.
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We now define a function L(g,v) = 3 Y., mav2 — V(g) on the phase space TR™. It is the
difference of the kinetic energy and the potential energy. We will see shortly that we can
re-write (10) as

d (0L oL
(11) 0t <ava> o0 0, 1<a<n

The function L is called the Lagrangian of the system (the name has almost nothing to do
with Lagrangian submanifolds). The equation (11), which we claim is equivalent to Newton’s
law of motion, is an example of the Euler- Lagrange equations. Let us now check that equations
(10) and (11) are, indeed, the same. Since 6U (3 25 mgvﬂ) MaVq and Bga (3 ngv%—V) =

g;/ F, we get 0 = dt(a(z L)— qu =4 (mava) + BV Hence madgg‘ = —E‘;T‘i.

So far introducing the Lagrangian did not give us anythlng new. We now show that it does
indeed allow us to look at Newton’s law from another point of view, and that the new point of
view has interesting consequences.

10.2. Variational formulation. Let L € C°°(TR"™) be a Lagrangian (i.e. a smooth func-
tion). Let ¢, ¢ be two points in R™. Consider all possible twice continuously differen-
tiable (C?) paths v : [a,b] — R™ with y(a) = ¢(©,v(b) = ¢). Denote by P(¢(?,¢M)
the space of all such paths The Lagrangian L defines a map Ay, : P(q(o),q(l)) — R by
Ar(v;q© f L(y (t)) dt. This map is called an action.

Hamilton’s principle: physical trajectories between two points ¢, q(l)) of the system gov-
erned by the Lagrangian L are critical points of the action functional Ay (-; q, q(l)).

Proposition 54. Hamilton’s principle implies Euler-Lagrange equations and hence Newton’s
law of motion.

Proof. Let v : [a,b] — R™ be a critical point (path, trajectory) of an action functional Ay ; let
v(t,€) be a family of paths depending on € € R such that y(¢,0) = v(¢) and such that for all €
we have y(a,€) = vy(a) and (b, €) = v(b) (i.e., we fix the end points).

Let y(t) = %kzov(t, €). Note that y(a) = 0 and y(b) = 0. Also %L:O(%y(t, €)) =
5 (& _v(t.€) = u(t).

Conversely, given a curve y : [a,b] — R" with y(a) = y(b) =0, we can find a family of paths
7(t, €) with fixed end points such that ~(t,0) = ~(t) and 2 Felee o(aﬂ(t’ €)) = y(t).
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Now

b
= Sttt 0) = T [ Lt oAy

8L8qa 6L8va
- [ o= 3 [ G 5T

(12) :Z/(aaq[/ya+gl/ya)dt

b
oL oL d, 6 oL
= Z{/ aya dt + %ya‘z - / dt(a )Ya dt} (integration by parts)

oL d, 0L
- o4 o dt
> / ( 7t 8%))3/
where y, () are arbitrary functions on [a, b] with y,(a) = 0 = y,(b). Recall:

Lemma 55. If f € C1([a,b]) and for anyy € C! with y(a) = y(b) = 0, we have fff(t)y(t) dt =
0, then f(t) =

We conclude that for any index o we must have gTL - %( Do ) = 0. That is to say, Hamilton’s

principle implies the Euler-Lagrange equations. U

Note that we have proved that given a Lagrangian there is a vector field on TR" whose
integral curves are the critical curves of the corresponding action.

Constrained systems and d’Alembert principle.
Let us start with listing some examples of constrained systems.

Example 26 (Spherical pendulum). The system consists of a massive particle in R? connected
by a very light rod of lenght ¢ to a universal joint. So the configuration space is a sphere S? of
radius £. The phase space is T'S?. This is an example of a holonomic constraint.

Example 27 (Free rigid body). The system consists of N point masses in R?® maintaining
fixed distances between each other: ||; —z;|| = const;;. We will see later on in Lecture 17 that
the configuration space is F(3), the Euclidean group of distance preserving transformations of
R3. Tt is not hard to show that E(3) consists of rotations and translations. In fact we can
represent F(3) as a certain collection of matrices:

()_{< > eRY|ATA=1detA=+1,vcR%

The group E(3) is a 6-dimesional manifold, hence the phase space for a free rigid body is
TE(3). The free rigid body is also a holonomic system.
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Example 28 (A quater rolling on a rough plane in an upright position (without slipping)). The
configuration space is (R? x S1) x S*, where the elements of R? keep track of the point of contact

of the quater with the rough plane, the points in the first S' keeps track of the orientation

of the plane of the quater and points of the second S' keep track of the orientation of the
design on the quater. The phase space of the system is smaller than T(R? x S! x S!) becasue
the point of contact of the quater with the plane has to be stationary. This is an example of
non-holonomic constraints, since the constraints on position do not determine the constraints
on velocity: the roll-no-slip condition is extra.

This leads us to a definition. Constraints are holonomic if the constraints on possible
velocities are determined by the constraints on the configurations of the system. In other
words if the constraints confine the configurations of the system to a submanifold M of R™ and
the corresponding phase space is T'M, then the constraints are holonomic.

We will study only holonomic systems with an added assumption: constraint forces do
no work.

d’Alembert’s principle: If constraint forces do no work, then the true physical trajectory
of the system are extremals of the action functional of the free system restricted to the paths
lying in the constraint submanifold.

Note that this principle is very powerful: we no longer need to know anything about the
constraining forces except for the fact that they limit the possible configurations to a constraint
submanifold. Let us see what kind of equation of motion d’Alembert’s principle produces.

Let M C R" be a submanifold and let L : TR™ O TM — R be a Lagrangian for a free
system. By d’Alembert’s principle we should find paths v : [a,b] — M such that ~ is critical
for

Ap:{o:]a,b) — M|o(a) = ¢, 0(0) = ¢V} =R
b
AL(J):/ L(o,6)dt

Suppose the end points ¢(® and ¢ lie in some coordinate patch on M. Let (q1,---,qn) be
the coordinates on the patch and let (q1,...,¢qn,v1,...,v,) be the corresponding coordinates
on the correspondign patch in TM. The same argument as before (cf. Proposition 54) gives
us Euler-Lagrange equations %(gTLa) — % = 0! Note that these equations represent a vector

field on a coordinate patch in the tangent bundle T'M.

Example 29 (Planar pendulum). The system consists of a heavy particle in R3connected by
a very light rod of lenght ¢ to a fixed point. Unlike the spherical pendulum the rod is only
allowed to pivot in a fixed vertical plane. The configuration space M is the circle S C R? of
radius ¢. The Lagrangian of the free system is L(z,v) = 3m(v} + v3) — mgzs where m is the

mass of the particle, 21, z9 coordinates on R?, x1,x9, vy, vs the corresponding coordinates on
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TR? and g is the gravitational acceleration (9.8 m/s?). Let us now compute the equations of
motion for the constraint system.

Consider the embedding S' — R2 ¢ +— (fsinp, —fcosy). The correpsonding embed-
ding TS! — TR? is given by (p, vy) +— (Lsinp, —Lcos p, L cos v, {sinwuv,). Therefore
the constraint Lagrangian is given by L(y,v,) = %m(EQ cos? cpv?p + % sin® govi) + mgl cos p =

%mﬁzvi + mgl cos . The corresponding Euler-Lagrange equation is %((%—I;) - g—i =0, ie.,
mZQCZ)—f + mglsinp = 0. Therefore ¢ = —% sin ¢ is the equation of motion.

Homework Problem 11. Show that de Rham cohomology is a ring: Let M be a manifold,
and let w € QF(M),7 € QY(M) be two closed forms. Show that w A 7 is closed and that
its cohomology class depends only on the classes of w and 7, i.e. show that the definition
[w] A [T] = [w A 7] makes sense.

Homework Problem 12. Show that if a form w € Q?(M) is exact then w" =w A --- Aw (n
times) is also exact. Conclude that if a form w € Q?(M) is symplectic and the manifold M is
compact, then the cohomology class [w] in H?*(M) is not zero. Hint: Consider [,, w" where
n = dimM.

Homework Problem 13. Look up the cohomology groups H¥(S™). Use it to answer the
following question: for what values of n, does S™ admit a symplectic form?

11. LECTURE 11. LEGENDRE TRANSFORM

We start with a brief digression. Let L : V' — R be a smooth function on a vector space V'
and let v1,...v, be coordinates on V' (we can choose them, for example, to be a basis of V*).

For each v € V consider the matirix ( 81‘?;5} - (v)). It can be interpreted as a quadratic form

d?L(v) on V as follows: for u = Zuia%i and w =Y wia%i we define

2
d’L(v)(u,w) = Z %(v)uiwj.

)

Note that the form d2L(v) has a coordinate-free definition: by chain rule for any u,w € V

2

3}
2 _
d“L(v)(u,w) = 858tL(U + su + tw) 00

Consequently the matrix ( agjaLU - (v)) is invertible if and only if the quadratic form d?L(v) is

nondegenerate.
Recall that given a Lagrangian L : TM — R and two points my, mg € M, the corresponding
action Ay : { C! paths connecting m; to ma} — R is defined by

b
Ap(o) = / L(o(t), (1)) dt
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Suppose that the points my, ms lie in a coordinate patch U with coordinates x1,...,xz,. Let
Tly.++, Ty, V1,...,U, be the corresponding coordinates on TU C T'M. We saw that a path
v ¢ la,b] — U, v(a) = mq, v(b) = ma, is critical for the action Ay, if and only if the Euler-
Lagrange equations

% (%(’Y(ﬂfr(ﬂ)) = g—i(%ﬁ) =0, 1<i<n

hold. Now %(g—i(’y, ¥)) = >25( nggvi v + afjé:vf'y'j), hence the Euler-Lagrange equations read

0*L 8L
VP ' 1< <n.
0viavj Z 8:0]87), t=n

Now assume that L is a regular Lagrangian, that is to say that the matrix ( 6328% -(x,v)) is
i0Vj

invertible for all (z,v) € TU. Equivalently assume that for all x € U the form dQL‘T (V) is
nondegenerate for all v € T, M. Then there exists an inverse metrix (My;) = (My;(z,v)):

0L
V; 00,

Under this assumption

hence
. OL O’L .
(13) Vi —ZMkz‘(a—xi —;m%’)

Exercise 8. Let g be a Riemannian metric on M and let L(z,v) = 1g(z)(v,v). Check that
this Lagrangian is regular. What does (13) look like for this L?
We can rewrite (13) as first order system in 2n variables.
1:j =vj

(14) (50 =)in = Z M 2% oL Z 832L

xj 81),,

Note that in physics literature the coordinates x;’s are usually called ¢;’s and the corresponding
coordinates v;’s are usually called ¢;’s. The confusing point here is that the dot above ¢; does
not stand for anything; ¢; is simply a name of a coordinate.

Equation (14) means that we have a vector field Xy on TU:

oL 8
(z,v) Z Uj% + Z Mkl Z 8:10381)1 (%k
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The vector field X7, is called the Euler-Lagrange vector field. One can show that

Proposition 56. Xy is a well-defined vector field on the tangent bundle T M, i.e. it transforms
correctly under the change of variables.

Rather than proving the proposition directly we will use a different, indirect, approach which
has its own merits. Given a function L : TM — R it makes sense to restrict it to a fiber
T, M and compute the differential of the restriction at a point v € T, M. Now the differential
d(L‘TIM)(v) is naturally an element of the dual space T M. This gives us a map £ = L(L) :
TM — T*M, L(z,v) = d(L‘TIM)(v). The map is called the Legendre transform associated
with a Lagrangian L. Note that for any v,w € T, M we have (L(z,v),w) = d(L‘TzM)(v), w) =
% ’OL(x, v+ tw), which is often a good way to compute the Legendre transform. Although the
diagram

TM ——— T*M

M
commutes, the transform £(L) need not to be a map of vector bundles since £ restricted to
each fiber need not be linear.

Example 30. Consider the manifold M = R and the Lagrangian L(z,v) = e” (this Lagrangian
has no physical meaning). Then the Legendre transform £ : TR — T*R ~ R? is given by
L(z,v) = (z,€")

Example 31. Let g be a Riemannian metric on on a manifold M and let L(z,v) = 3g(z)(v,v)
(“kinetic energy”). Let us compute the Legendre transform.

(L(x,v),w) = %‘0 <%g(m)(v + tw, v + tw))

— %!0 <%9($)(v,v) + tg(z) (v, w) + %tZg(q:)(w,w)> = g(z)(v,w).

Hence L(z,v) = g(z)(v,-) = g(x)%.

Remark 57. One can define a Legendre transform for a function on an arbitrary vector bundles.
Namely, if L : E — R is a smooth function on a vector bundle £ — B it makes sense to define
the Legendre transform £(L) as a map from E to its dual bundle E* (a bundle with fibers dual
to the fibers of F) by

L(x,"): By — (Ey)" = E;, L(x,e)= d(L‘EI)(e).

Let us now compute the Legendre transform in coordinates. Let L : TM — R be a La-
grangian. Let x1,...,x, be coordinates on M, and x1,...,2y,v1,...,v, be the corresponding
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coordiantes on T'M. Then it is easy to see that

oL oL
L(X1y. .o Ty V1yeneyUn) = (T1,. .., Ty, a—vl(x,v), R a—vn(az,v))
Consequently the differential of £ is given by
1 0
: 0
2L 2L
0x;0v; Ov;0v;

It follows that a Lagrangian L is regular if and only if the differential of the associated Legender
transform d(L£(L)) is one-to-one, i.e., if the Legender transform £ is a local diffeomorphism (we
used the inverse function theorem).

Theorem 58. Suppose L : TM — R is a Lagrangian such that for all (x,v) € TM the
quadratic form dQ(L|T 1) (V) is positive definite. Then

1. The image O of the Legendre transform L = L(L) : TM — T*M s open and the map
L:TM — O is a diffeomorphism.

2. There is a smooth function H : O — R such that dL(X1) = Xg where Xy is the
Hamiltonian vector field of H and X7, is the Euler-Lagrangian vector field of L. Moreover,

H(L(z,v)) = (L(z,v),v)) — L(z,v).

3. The inverse L(L)~' of the Legendere transform of L is the Legendre transform L(H)
associated with H.

As a preparation to proving the theorem let us first consdier the Legendre transform of a
function on a vector space. Let f: V — R be a smooth function on a vector space V. We
define the “Legendre transform” L(f):V — V* by L(f)(v) = df (v).

Assume now that for all v € V the form d?f(v) is positive definite. Such functions f are
called (strictly) convex.

In the simplest case dimV = 1, i.e., V = R. Then the quadratic form d?f(v) is simply the
second derivative f”(v), so f is convex if and only if f”(v) > 0 for all v. Note that if f is
convex and if f'(z) = 0 for some x € R, then z is the unique minimum of f. Of course such
x need not exist.

Example 32. Let f(v) = e”. Then f”(v) > 0 but f has no critical points.
Continuing with the simplest case of f : R — R we see that £(v) = f/(v) and
§=Lv) &&= f(v)

& () -€ ) =0

& v is a critical point of f¢(v) := f(v) =& v
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Since f¢"(v) = f"(v) we see that if f is strictly convex then the transform £ is one-to-one.

Now let’s drop the assumption on the dimension of V' and prove that if f: V — R is convex
then the transform L£(f) : V — V™ is one-to-one. Let us show first that if f is convex, then
the critical points of f are unique:

Suppose v and vy are two distinct critical points of f. Consider a function h(t) := f(tv; +
(1 — t)vg). The function h is is convex, and ¢ = 0,1 are critical points of h. This contradicts
the dimension 1 case we have considered. 0.
Now & = L(vo) iff & = df (vo) iff vg is a critical point of fe(v) := f(v) — &(v). If f is convex
than fg is also convex. Hence, since the critical points of f¢ are unique, we conclude that the
transform L(f) is globally one-to-one.

Since for a convex function the transform L is a local diffeomorphism, the image O of L(f)
is an open subset of V*. Combining this with the observation that the transform is globally
injective, we conclude further that £(f): V — O C V* is a diffeomorphism.

It follows that if L : TM — R is fiber convex (that is, if d? (L’ 7 ) (v) is positive definite
for all (x,v) € TM), then the image O = L(T'M) is open and that L(L) : TM — O CT*M
is a diffeomorphism. This proves part 1 of Theorem 58.

Let us now go back to the vector space case. Consider again a smooth function f € C°(V)
wich is convex: d?f(v) is positive definte for all v € V. Let us assume for simplicity of notation
that the image of L(f): V — V* is all of V*.

Lemma 59. Let f : V — R be a smooth conver function on a vector space V such that
L(H)V) = V*. Then L(f)™' = L(H) for some H € C®(V*). In fact, H o L(f)(v) =
(L(f)(),v) — f(v). Here (-,-) : V¥ x V — R denotes the canonical pairing.

Proof. Consider A = graph(L(f)) C V xV*. Choose a basis of V and the dual basis of V*. This
gives us coordinates x1,...,x, on V and dual coordinates £1,...,&, on V*. Recall that ay =
>~ &; dx; is the tautological one-form on T*V ~ V x V* and ay- = > x; d¢ is the tautological
one-form on T*(V*) ~ V x V*. Now ay +ay- = Y &dei+ Y v dé = d(>° x:&) = d(-, ) (2, §).
The graph A = {(v,df (v)) : v € V'} is the image of the map df : V. — T*V Since d(df) = 0,
the graph A is Lagrangian in (T*V,day) (cf. homework problem 7). Since the transform £(f)
is a diffeomorphism, the graph A is the image of some map p : V* — T*(V*) =~ V x V*,
Since A is Lagrangian for day = —day~ we have du = d(p*ay~) = 0. By Poincaré Lemma
(Lemma 28) p = dH for some function H € C*°(V*). By construction, L(H) = L(f)~!.
It remains to compute the functon H. Let

VxV*
‘IV \pi
v v*

be the obvious projections. Then df o p; ‘A =1idp and dH opg{A = idp. Therefore OZV}A = (df o
pl}A)*aV = pi((df)*ay) = pidf. Similarly oy« = p5dH. Therefore (Pl’A)*df + (p2|A)*dH =



40 E. LERMAN

(av +ay«)|, = df, >‘A Hence (pi f —l—p;H)‘A = (- )‘A + ¢, where ¢ is some constant which
we may take to be zero. We conclude that f(v) + H(L(f)(v)) = (L(f)(v),v). O

Note that same proof works through even if the Legendre transform £(f) is not surjective,
ie. if L(f):V — O C V* is a diffeomorphism for some open subset O of V*.

If L is a fiber-convex Lagrangian as in the hypotheses of Theorem 58 we can apply the above
argument fiber by fiber to the maps £(L)(z,-) : TuM — T M. We conclude that the smooth
function H : O — R defined by H(L(L)(z,v)) = (L(L)(x,v),v)) — L(z,v) has the property
that £(H) = L£(L)~!. This proves Theorem 58 except for the claim that d£(L)(X1) = Xy.

Remark 60. Recall that the physics notation for (1, ..., Zp, v1,...,0n) 8 (q1y .- Gn, 1y -+ dn)-

In physics literature p; := g—(f are callled (generalized) momenta. They are considered as co-

ordinates on the cotangent bundle and as functions on the tangent bundle. The defintition of
the Hamiltonian H then takes the form H(q,p) = > pi¢i — L(q, ).

12. LECTURE 12. LEGENDRE TRANSFORM AND SOME EXAMPLES

It remians to prove dC(L)(X1) = Xpy where X, is the Euler-Lagrange vector field of the
Lagrangian L, dC : T(TM) — T(0O) is the differential of the Legendre transform £ = £(L)
and Xy is the Hamiltonian vector field of of the function H defined in Theorem 58. Our proof
is a computation in coordinates.

Recall that the Euler-Lagrange vector field Xy, is given by

0 0
= — B, —
Xofoo) = 3 g + 2 By

where By :== ), Mki(g—fi —Zj %vj) and the matrix (My;) is defined by ", Mki% = Op;j.
It is enough to show that «(X1)L*w = d(L;H). In coordinates, L(x;,v;) = (x4, g—i) and
w =Y _dx; Adp;. Consequently L*w = > dx; A d(g—i). Therefore

d(L*H) =d({L(x,v),v) — L(z,v))
= Z d(g—ivi - L)
- Z (g—idw + Uid(g—i) — g—idxi — g—idvi)
= Z (U’d(g_i) - g—id@)
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On the other hand

. 9 9 oL
(Xp)L'w = Wk g+ By )dei N5 -)

—Z(vk )G e G ) + 0+ Bl d( ) (i) )

a:L‘k ov;
oL, &L PL
-3 <vk5ikd(8_vi) - Wd Bt

oL 9L
- Z'Uz 61} Z Gazkav U}gdl’i B ZZ:((%@ - z]: axjavi Uj)dl‘i

L aL
=) vid(+—) — -—da;
Zi:’u 8Ui 01131 v

Therefore d(L*H) = «(X1)L*w and hence dL(Xr) = Xp. This finishes the proof of Theo-
rem 58.

Note that we have also proved that the Euler-lagrange vector field of a fiber-convex La-
grangian is a well-defined vector field. But the main content of the theorem is that it links
the variational and Hamiltonain formulations of mechanics. Note also that it follows that the
integral curves of the geodesic flow used to prove the tubular neighborhood theorem do project
down to geodesics (cf. Lecture 7).

Let us now look at some examples. Recall that if we have N particles in R® with masses
my, 1 < k < N, subject to conservative forces encoded in a potential V', then the Lagrangian
of the system is given by L(Z1,...,ZN,01,...,0N) = ka||vk||2 V(Zy,...,ZN). If we relable
the particles and identify (R?)Y with R”, n = 3N, then the Lagrangian has the form

1
v) = 3 Zgijvivj —V(x)
Z’J

where (g;;) is a fixed symmetric positive definite matrix. If a submanifold M — R" is a
constraint for our system, then d’Alembert’s principle tells us that the Legrangian Lj; for the
constrained system is Lj; = ¢*L, that is

S (*0) (@) (0,) ~ V()

where ¢*g is a Riemannian metric induced by the embedding ¢ of M into R™. This motivates

Ly(z,v) =

Definition 61. A classical mechanical system on a manifold M is a Lagrangian L : TM — R
of the form L(z,v) = $g(z)(v,v)—V (z), where g a Riemannian metric on M and V is a function
on M.

Given a classical mechanical system with a Lagrangian as above what is the corresponing
Hamiltonian on T*M?
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v) = g(a)(v)
9(@)(v, )
dl

It is easy to see that the Legendre transform £ : TM — T*M is given by L(z,
) _
z))~'p) +

(cf. Example 31). Consequently H(L(z,v)) = H(g*(x)v) = <gﬁ( Ju,v) — L(z,v) =
39(2)(v,v) + V(2) = 39(2)(v,v) + V(z). Therefore H(z,p) = 59(z)((¢*(x)) ", (g
V(z) = 39*(z)(p,p) + V(z) where g* is the dual metric on T*M.

Recall that if if ¢"(z) := ¢*(x)(dxs, dz;), then ¢ g, = ;. We can now compute some
concrete examples.

Example 33 (Planar pendulum). The unconstrained Lagrangian of a heavy particle in R?
is L(z,v) = Z(v{ + v3) — mgzy = Z(dz} + dz})(v,v) — mgzs, where g is the gravitational
constant and m is the mass of the particle. Our constraint is a circle M = S' of radius ¢, and
the embedding i : S* — R? can be chosen to be i : ¢ +— (£sinp, —¢ cos ). Consequently the
constrained Lagrangian is given by

m, ., 0 0 .
L((p,’l)@) = E(Z g)(vsﬂ%va%) -1 V(JE)

-m . 9 B 9 0 0
=3 (d(£sinp)* + d(—L cos ) )(UW—G@’U@_&/D) + {(cos p)m
m 0 0
— l2 2 d 2 202 d 2 /¢
B 2(cos pdp® + sin” pdyp )(U@_E)go’%_ago) + £(cos ¢)myg

/
= mTvi + mgl cos ¢

It follows that in coordinates (¢, p,) € S* xR the Hamiltonian is given by H (¢, p,) = %# p?o -
mgl cos p. The symplectic form, of course, is the standard form w = dy A dp,. Therefore the
Hamiltonian vector field Xy is #pw% — mglsin cp%. Thus the equations of motion are

. 1
b= P
Py = —mglsing

We now start exploiting the fact that our equations of motion are Hamiltonian.

Definition 62. Let (M, w) be a symplectic manifold. A function f € C°°(M) is a conserved
quantity (a.k.a. a first integral) for a Hamiltonian H € C*°(M) iff f is constant on the the
integral curves 7(t) of the Hamiltonian vector field X of H: f(vy(t)) = constant.

The following theorem is trivial but has profound consequences.

Theorem 63. Let (M,w) be a symplectic manifold and H a Hamiltonian on M. The function
H is a conservd quantity for H. In particular the integral curves of the Hamiltonian vector
field of H lie entirely in the level hypersurfaces H = c.

Proof. Let v be an integral curve of the Hamiltonian vector field of H. Then H((t)) = const
if and only if 0 = dtH( (t)). Now %H(v(t)) = Xp(H) = «(Xg)dH = o(Xu)((Xg)w) =
w(Xp, Xg) =0 since w is a skew-symmetric tensor. O
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Example 34. For planar pendulum the level sets of H are one-dimensional. Hence the con-
nected components of the regular level sets of H are of integral curves of Xp. Therefore if
((t),pp(t)) is an integral curve, we have H(p,p,) = %#pQ — mgl cos p = FE for some con-

P
stant E. Hence p, = £v2me2(E + mgf cos p)'/?

Example 35 (Spherical pendulum). For a spherical pendulum the unconstrained lagrangian
is L(z,v) = im(v} + v3 + v3) — mgzs = B(dx? + daf + da:%)(via%i,vi%) — mgzs. Our
constraint is a round sphere S? C R? of radius ¢. Hence the constrained Lagrangian is given
by L(q,q4) = %g9(x)(4,4) — mgw3 where g is the round metric on S2. The corresponding
Hamiltonian is H(q,p) = ﬁg*(m)(p,p) + mgxrs where ¢g* is the metric dual to the round
metric. We know that H is a conserved quantity. We will see in the next few lectures that
there is another conserved quantity — angular momentum about the zs-axis. The reason for

the existence of the second conserved quantity is the rotational symmetry of our system.

Homework Problem 14. Let (M, g) be a Riemannian manifold, N C M a submanifold.
Then TN C T'M since N is a submanifold, it inherits a metric gy from M. Thus we hae two
isomorphisms ¢f : TM — T*M and gy : TN — T*N. Show that the composition

g y—1 #
o TN NN oo L e

is a symplectic embedding, i.e. p*(wp+pr) = wr=n.

13. LECTURE 13. CONSTANTS OF MOTION. LIE AND POISSON ALGEBRAS

Recall that if (M,w) is a symplectic manifold and f € C°°(M) is a smooth function on M,
then the Hamiltonian vector field X of f is defined by +(Xf)w = df, that is, X is a section
of the tangent bundle making the diagram

w

TM™

f

S T*M
N

M

commute.

Definition 64. Let (M, w) be a symplectic manifold and let f € C°°(M) is a smooth function
on M. A function h is a constant of motion for f, (equivalently h is preserved by f, h is
a first integral of f) iff X (h) = 0.

Lemma 65. Let (M,w) be a symplectic manifold, f,h € C*(M) be two smooth functions.
Then f is preserved by h if and only if h is preserved by f.
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Proof.

Xn(f) = (Xn, df)
= (X, (X f)w)
=w(Xy, Xp)
= _W(XfHXf)
= _<Xf7 L(Xh)w>
= —(Xy,dh)
= —Xy(h)

Therefore X}, (f) = 0 if and only if X(h) = 0. O

Definition 66. The function {f,h} := X;(h) = (Xf,dh) = —(X},df) is called the Poisson
bracket of f and h defined by the symplectic form w.

Thus Lemma 65 asserts that the functions f and h are constants of motion for each other if
and only if their Poisson bracket {f,h} is zero..

Example 36. Consider a particle in R? in a central force field. That is, consider the manifold
M = T*R? with coordinates (q1, g2, g3, p1, 2, p3) and with the canonical the symplectic form
w = > dg; Ndp;. A central force Hamiltonian is a function of the form h(q,p) = ﬁ Sop? +

V(||g||?). Consider the vector field Z = ‘ha% — q2aiql +p18%2 — pQB%l' We then have
1

m

Z(h) (p1p2 — p2p1) + V' (Ial1*)2(q1¢2 — q201) = 0.
Moreover, the vector field Z is Hamiltonian: «(Z)w = L(qla%2 - qga%l +pla% —pgaipl) > dgi A

dp; = q1dp2 — q2dp1 — p1dge + padqy = d(q1p2) — d(gep1) = d(qip2 — q2p1). So Z = X, where
Js(q,p) :== q1p2 — g2p1. Consequently the function js is conserved.

This example is meant to provoke a number of questions:

1. Where did this vector field Z come from and why is it Hamiltonian?
2. Are there any other conserved quantities?

It is easy to check that ja(g,p) = q1ps — g3p1 is also conserved and that the Poisson bracket
J1 := {J2,73} of js and ja is conserved as well.

One can also notice that the Hamiltonian iss rotationally symmetric. We will see that it
is the rotational symmetry of the problem which is responsible for the presence of the three
conserved quantities.

To make sense of all this, we first introduce the notion of Lie algebras. We will then follow
by introducing Lie groups, group actions, and Hamiltonian group actions.

13.1. Lie algebras.

Definition 67. A (real) Lie algebra A is a (real) vector space (finite or infinite dimensional)
together with a bilinear map [-,] : A x A — A, called the Lie bracket, such that for all
X,Y,Z €A
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1. [X,Y]=—[Y,X] anti-symmetry
2. [X,[Y,Z]] = [[X,Y],Z] + [Y,[X, Z]] Jacobi identity
Example 37. Let A = R3. Define the bracket [-,-] : R? x R? — R3 by [z,9] := x x y, the

cross-product of x and y. It is not hard to check that A is a Lie algebra.

Example 38. Let V' be any real vector space. Define [z,y] = 0 for all z,y € V. Then (V,[-,])
is a Lie algebra, called an abelian Lie algebra.

Example 39. Let A be any associative algebra over the reals (for example A can be the
algebra of n x n matrices with multiplication being the matrix multiplication). Then A can be
made into a Lie algebra by defining

[a,b] := ab — ba
(Check that A with this bracket is indeed a Lie algebra).

Example 40. Let M be a manifold and let A be the vector space of smooth vector fields on
M. Take the bracket on A to be the Lie bracket of vector fields: for any vector fields X and
Y and for any smooth function f let [X,Y](f) = X(Y(f)) — Y(X(f)). With this bracket A
forms a Lie algebra.

Definition 68. Let (M,w) be a symplectic manifold. A vector field X on M is called sym-
plectic if the Lie derivative of the symplectic form w with respect to X is zero: Lxw = 0.

Remark 69. Let ¢; be the flow of a vector field X on a symplectic manifold (M,w). The vector
field X is a symplectic if and only if ¢jw = w for all time ¢.

Note also that if a vector field X on a symplectic manifold (M, w) is symplectic then
0=Lxw=d(X)w+ (X)dw = de(X)w + 1t(X)0 = de(X)w

since w is closed. Thus a vector field X is symplectic if and only if the form (X )w is closed.
Since for any Hamiltonian vector field X; we have, by definition, ¢«(X¢)w = df, we conclude
that

Proposition 70. Any Hamiltonian vector field is symplectic.

The converse is not true: not every symplectic vector field is Hamiltonian. Indeed consider
the torus S! x S* with “coordinates” 61, 6. The form df; A dfs is a globally defined symplectic
form. The vector field 8%1 is symplectic but not Hamiltonian since dfs is not an exact form on
the torus.

We assert that symplectic vector fields on a symplectic manifold form a Lie algebra. In fact,
more is true.

Lemma 71. The Lie bracket of two symplectic vector fields is Hamiltonian.

Proof. Let Z and Y be two symplectic vector fields on a symplectic manifold (M,w). On the
one hand
Lz(((Y)w) =u(LzY)w + «(Y)(Lzw) = ([Z,Y])w.
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On the other hand,
Lz((Y)w) = d((Z)((Y)w)) + «(Z)d(((Y)w) = d((Z)(e(Y)w)) + 0 = d(w(Y; 2))
Therefore,
(15) W2, Y o = du(Y, 2),
that is, the Lie bracket of Z and Y is the Hamiltonian vector field of the function w(Y, Z). O

Definition 72. Let L be a Lie algebra. A vector subspace A is a Lie subalgebra if for any
X,Y € A the Lie bracket [X,Y] is also in A.

A linear map v from a Lie algebra A; to a Lie algebra A, is a Lie algebra morphism (a
map of Lie algebras) if for any x,y € A; we have

([, y]) = [P(2), ¥ (y)]-

A Lie subalgebra I of an algebra L is an ideal if for any X € [ and any Y € L the Lie
bracket [X,Y] is in I.

Thus the Lemma 71 asserts that the symplectic vector fields on a symplectic manifold form a
Lie algebra and that Hamiltonian vector fields form an ideal inside the Lie algebra of symplectic
vector fields.

Remark 73. Let Xy and X, denote, as usual, the Hamiltonian vector fields of the functions
f,g € C°°(M) on a symplectic manifold (M,w) respectively. Then it follows from equation (15)
that

W[ Xy, Xf))w = dw (X, Xg) = d({(Xf)w, Xg)) = d({df, Xg)) = d(X,(f)) = d({g, [})-
Therefore
(16) [ Xy, Xyl = Xyg,53-

This strongly suggests that on a symplectic manifold (M,w) the Poisson bracket on the space
of smooth functions C°°(M) makes it into a Lie algebra, and that map from C*°(M) to the
Lie algebra of the Hamiltonian vector fields Ham(M,w) given by f +— Xy is a map of the Lie
algebras.

Lemma 74. Let (M,w) be a symplectic manifold. The algebra of smooth functions forms a
Lie algebra with the bracket given by the Poisson bracket.

Proof. 1t is easy to see that the Poisson bracket {-,-} : C*°(M) x C*°(M) — C*°(M) is skew-
symmetric and bilinear. The interesting part is the Jacobi identity. Let f,g,h € C°°(M) be
any three functions and let Xy, X, and X}, denote the corresponding Hamiltonian vector fields.
Now
Hf g} b} = Xi5g(h) by definition of the Poisson bracket

= [Xy, X4](h) by equation (16)

= Xp(Xg(h)) — Xg(Xy(h))

= {f7 {gvh}} - {gv{fv h}}
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This implies that {f,{g,h}} = {{f, g}, h}+{g,{f, h}}, which proves that the Poisson bracket
on a symplectic manifold satisfies the Jacobi identity . Consequently (C*°(M),{-,-}) is a Lie
algebra. ]

Corollary 75. Let (M,w) be a symplectic manifold. The map from the Poisson algebra of
smooth functions C*° (M) to the Lie algebra of symplectic vector fields E(M,w) given by f — Xy
1s a Lie algebra map.

Corollary 76. Suppose two smooth functions f,g on a symplectic manifold (M,w) are con-
stants of motion for a function h. Then the Poisson bracket {f, g} is also a constant of motion
for h.

Proof. It {h,g} = {h, f} = 0 then by the Jacobi identity {h,{f,g}} = {{h, f},9}+{f, {h,9}} =
{0,9} +{f, 0} =0+0=0. O

Remark 77. We note that the Poisson bracket on a symplectic manifold defined by the sym-
plectic form has one more property: for any functions f, g and h

{f,gh} = Xy(gh) = (Xfg) h+ g Xs(h) = {f,g}h + g{f, h}

i.e. {-,-} is a bi-derivation with respect to ordinary multiplication of functions.
The observation motivates the following abstract definition.

Definition 78. Let A be any commutative algebra over the reals. A bilinear map {-,-} :
A x A — Ais a Poisson bracket iff
1. {-,-} is skew-symmetric: {a,b} = —{b,a} for any a,b € A,
2. {-,-} satisfies the Jacobi identity: {a,{b,c}} = {{a,b},c} + {b,{a,c}} for any a, b and ¢
in A.
3. {-,-} is a bi-derivation: {a,bc} = {a,b}c+ b{a,c} for any a, b and ¢ in A.
A commutative algebra A together with a Poisson bracket is called a Poisson algebra.

Thus the algebra of functions on a symplectic manifold (M,w) with the bracket defined
by {f,g9} = X¢(g) is a Poisson algebra. Other Poisson algebras arise as (sub)algebras of the
algebras of smooth functions on a manifold. The Poisson bracket, however, need not come
from a symplectic form (see Homework Problem 16).

Homework Problem 15. Let (M, w) be a symplectic manifold and let {, } be the correspond-
ing Poisson bracket. Show that in coordinates

af o
L {f.9} =X g gt {wi 2y}
2. Let -Pij = {Ii,ﬂfj}, let Wi = w(i i) Show that Zj Pl'jw]‘k = 6zk

ox;’ 85!2]'

3. What condition should a collection of functions Pj; satisfy for (f,g) :== > g i %Hj to

be a Lie algebra bracket?

Homework Problem 16. Let g be a finite dimensional Lie algebra with bracket [-,-], and
let g* denote vector space dual, i.e. g* = {¢ : g — R/ linear }. Then we have a pairing
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gxg — R (LX) — ((,X) = £X). Now let f,h € C*>(g*) be two functions. We define
a bracket {f,h}(¢) as follows: the covectors df(¢) € T,/g* ~ (g*)* ~ g and similarly dh(¢) €
T/g* ~ g. Hence [df;,dhs] makes sense as an element of g. Define {f, h}(¢) = (¢, [dfs, dhy]).
Clearly {f,h}(¢) = —{h, f}(¢). Show that {-,-} is in fact a Poisson bracket, i.e. that

L {f.ght ={f.g}th + g{f.h} and

2. {f{g.h}} ={{f. g} h} +{g,{/. n}}
for all f,g,h € C*(g*).

Hint: Prove (1) first.

The following observation may be useful for proving (2). Let z1,...,x, be a basis of
g. They are coordinate functions on g*. Since g is a Lie algebra, [z;,z;] = >, Ciijk for
some constants ij These constants are not arbitrary; the Jacobi identity [z;,[z;,zk]] =
(s, 2], x1) + [}, [24, 25]] gives relations. Show that {z;, z;} = C’Zwk Use (1) to show that

() o0y = 30 5L i)

14. LECTURE 14. LIE GROUPS: A CRASH COURSE

The material in this section is sketchy. Most proofs are only outlined. We refer the reader
to [Warner] or [Spivak] for details.
Definition 79. A Lie group G is a group and a manifold such that

1. the group multiplication map u: G x G — G, (a,b) — ab is C*°.

2. the inverse map inv: G — G, a — a~ ! is C*.
Remark 80. If G is a Lie group then for all « € G the maps R, : G — G, g — ga and
Ly, : G — G, g — ag (the right and left multiplication by a) are diffeomorphisms.
Example 41. Any finite dimensional vector space is a Lie group under vector addition.

Example 42. The general linear group GL(n,R) of all n x n nonsingular real matrices is

a Lie group under matrix multiplication. Note that GL(n,R) is an open subset of R"™ defined
by the equation detA # 0.

More generally, if V' is a finite dimensional vector space over R the group GL(V) of all
invertible linear maps is a Lie group. Similarly, if V' is a vector space over C the group of
invertible complex-linear maps is also a Lie group.

Example 43. The circle S* = {¢? : § € R}, the group of complex numbers of norm 1, is a
Lie group under complex multiplication.

To each Lie group G there corresponds a Lie algebra g. The correspondence is defined as
follows.

Definition 81. Let £ be a vector field on a Lie group G. x is left-invariant if for any a € G
(18) ALa(€) = €.

where L, as above denotes the left multiplication by a € G.
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It is not very difficult to show that any left-invariant vector field is automatically smooth
( see [Warner, p 85]). If £ and n are two left-invariant vector field then [£,7)] is also left-
invariant since dL4([€,n]) = [dLa(§),dLa(n)]. Therefore the left-invariant vector fields form a
Lie subalgebra of the Lie algebra of all vector fields on our Lie group. We shall denote this
Lie algebra by g. Equation (18) implies that a left-invariant vector field ¢ is determined by its
value at the identity, (dL,)(e)({(e)) = &(a). Conversely, given a vector & in T.G the vector
field ¢ defined by &(a) = (dLg)(e) (&) is left-invariant. Thus the map sending a left-invariant
vector field to its value at the identity is bijective. From now on we identify g with the tangent
space at the identity.

Definition 82. A Lie group H is a Lie subgroup of G if there is a map i : H — G such
that :

1. ¢ is a group homomorphism and
2. 1 is a one-to-one immersion.

Remark 83. A Lie subgroup could be a dense in the group: consider for example a line in R?
with irrational slope. The image of the line is dense in the two torus S* x S! = R?/Z2.

Theorem 84. There is a bijective correspondence between connected Lie subgroups of a Lie
group G and Lie subalgebras of its Lie algebra g.

Sketch of proof. Let b be a Lie subalgebra of g and &1, ... , &, be the basis of . The elements
&i’s are left-invariant vector fields on G. For every a € G the vectors &1 (a), ... , {,(a) are a basis
for an h-dimensional subspace of the tangent space T,G thus giving rise to an h-dimensional
distribution on G. This distribution is involutive. Indeed, since b is a Lie subalgebra

(6,651 =Y ki,
P

where cfj € R. By Frobenius integrability theorem for every a € G there is a maximal connected
integral submanifold N, passing through a. Set H = N,, the integral submanifold passing
through the identity element of G. Let b be a point in H. Since the distribution is invariant
under left translations, Ly-1(H) is also an integral submanifold passing through e. Hence for
any ¢ € H b='c € H. It follows that H is an abstract subgroup of G. In fact H is a Lie
(sub)group (cf [Warner, p 94]). O

Exercise 9. Consider the general linear group GL(n,R). Since the group is an open subset
of R”2, its Lie algebra gl(n,R) is R™. Show that the bracket [,-] on gl(n,R) is given by
[A,B] = AB — BA. Hint: If ¢ € GL(n,R) and A € T;3 GL(n,R) show that dL,(A) = gA

(matrix multiplication).
14.1. Homomorphisms.

Definition 85. Let G and H be two Lie groups. A map p: G — H a Lie group morphism
iff p is a group homomorphism and is smooth.
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Example 44. The determinant map det : GL(n,R) — R* is a Lie group morphism (R* is
a Lie group under ordinary multiplication). The determinant map is smooth because it is
polynomial.

Given a Lie group homomorphism p : G — H, we have an associated linear map §p: g — b
defined by dp(§) = dpe(§) (recall that we have identified g with 7.G, the tangent space at the
identity, and h with T, H).

Exercise 10. Check that dp is a morphism of Lie algebras.
If G is simply connected we also have the converse:

Theorem 86. Let G and H be Lie groups. Suppose that G is simply connected. Given a Lie
algebra homomorphism T : g — b there exists a unique Lie group homomorphism p: G — H
such that dp = .

Proof. The product G x H is a Lie group with Lie algebra g x h. Let £ be the graph of 7,
t={(&7(£)): & € g} Since 7 is a Lie algebra map, € is a Lie subalgebra of g x h. The the
connected subgroup K of G x H corresponding to £ should be the graph of the homomorphism
that we are trying to construct.

Let us prove this. Let m; : G x H — G be the projection on the first factor. Since 7 is
a Lie group homomorphism, ¢ = m|x : K — G is a Lie group homomorphism. Moreover,
do(e) : T.K — T.G is surjective. It follows that d¢(k) is surjective for any k € K. Indeed, for
any a € K,

¢ o Ly (a) = ¢(ka) = ¢(k)¢(a) = Ly © ¢ (a),
so by the chain rule
dp(k) o (dLy)(e) = (dLgr))(€) o do(e).

Since Ly and Ly are diffeomorphisms, d¢(k) is surjective if and only if d¢(e) is surjective.
Since dim K = dim G, the map ¢ is a local diffeomorphism. In particular ¢(K) is open in G.
Since G is connected, ¢(K) = G. It follows that ¢ : K — G is a covering map. But G is simply
connected! So ¢ is a diffeomorphism. The map p: mo0¢~ ' : G — H, where my : G x H — H
is the projection on the second factor, is the desired Lie group homomorphism from G to H.
The uniqueness of p follows from the uniqueness of the subgroup corresponding to a given
Lie subalgebra. ]

14.2. The exponential map.

Example 45. Consider the map exp : gl(n, R) — GL(n,R) defined by A — e := > %A”
which converges for all A € gl(n,R). One can check that e!? - e54 = e(t+5)4. S for a given
vector A € gl(n,R), the image {e! |t € R} of exp is a one-dimensional subgroup of GL(n,R).
Moreover the curve vy4(t) = et/ satisfies %‘tfm(t) = etA = (dLctay)(A). Thus y4(t) is an
integral curve of the left invariant vector field corresponding to A.
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The example motivates the following construction. Let G be a Lie group and g denote its
Lie algebra. Fix a nonzero vector X € g. Then the map

R—g, t—tX

is a Lie algebra homomorphism (the bracket on R is necessarily zero). Since R is simply
connected there exists by Theorem 86, a unique group homomorphism vx : R — G with
%‘tzo vx(t) = X. Since yx is a homomorphism, yx(a +t) = vx(a)yx(t). Hence

d d d
a4 = 2| xltta)= o) ax(@)rx(t) = dLyy @ (X).

vx (t)
=0 dt |,

t=a

We conclude that vx is an integral curve of the left invariant vector field determined by X € g.
Since the solutions of a differential equation depend smoothly on the parameters, it follows
that the map

Rxg—G, (t,X)—yx(t)

is smooth.
We now define the exponential map exp : g — G by

exp(X) = yx(1).

By the above discussion it is a smooth map.

Since %‘ o Vx(ct) = c¢X it follows that exp(cX) = vx(c). From this one can easily deduce
that dexp(0) : Tog = g — T.G = g is the identity map. Hence exp is a local diffeomorphism
near 0 in g.

Exercise 11. Show that for the general linear group the two definitions of the exponential
map agree.

We note that the exponential map has a universal property: if G and H are two Lie groups,
f : G — H is a morphism of Lie groups, and df : g — b the corresponding morphism of Lie
algebras, the diagram

of

g—)

exp l l exp

GLH

commutes. It follows that if G is any Lie subgroup of GL(n,R) then the exponential map
exp : g — G is also given by the formula

o0 1 .
exp(A) = Z EA .
n=0

The exponential map lies at the heart of the following very powerful theorem.
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Theorem 87 (closed subgroup). Let H be an abstract subgroup of a Lie group G, which is
also a closed subset of G. Then H is a Lie group, its Lie algebra by is the set

{X eg|exp(tX)e H forall teR},
and H s a Lie subgroup of G.

We will not prove this theorem. The interested reader can find a proof in [Warner| or
[Spivak].

Example 46 (Symplectic group). Let (V,w) be a symplectic vector space. The subset Sp(V, w)
of GL(V) consisting of all elements A with A*w = w is closed in GL(V) (why?) and forms a
subgroup. By the closed subgroup theorem it is a Lie subgroup called the symplectic group,
and its Lie algebra sp(V,w) consists of all linear maps X : V' — V such that

exp(tX)'w=w forall t € R.
Differentiating the above equation with respect to t we get
sp(Viw) ={X € gl(V) | w(Xv,w) + w(v,Xw) =0 for allv,w € V}.

Example 47 (Orthogonal group). Let V be a vector space and let g be a positive definite
bilinear form on V. The subset O(V, g) of GL(V') consisting of all elements A with A*g = g is
closed in GL(V') and forms a subgroup called the orthogonal group. By the closed subgroup
theorem it is a Lie group, and its Lie algebra o consists of all linear maps X : V' — V such that

exp(tX)*g=g¢g forall t € R.

Differentiating the above equation with respect to t we get
o(V,g) ={X €gl(V) | g(Xv,w) + g(v,Xw) =0 for allv,w € V}.
Homework Problem 17. Let (V,w) be a symplectic vector space. Show that the map
1
VxV-sp(Viw)*, (v,u)—{Xr— §w(Xv,u)}

gives rise to a vector space isomorphism S%(V) — sp(V,w)*, where S?(V) denotes the sym-
metric tensors in V ® V.

Homework Problem 18. Let (V, g) be a vector space with an inner product. Show that the
map

VxV—ooVw?* (vu)—{Xw—g(Xvu)}

gives rise two a vector space isomorphism A%(V) — o(V,w)*, where A?(V) denotes the skew-
symmetric tensors in V @ V.
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15. LECTURE 15. GROUP ACTIONS

Definition 88. An action of a group G on a set N isamap G X N — N, (g,z) — g-x such
that

1. 1g -z = for all x € N, where 15 denotes the identity element of G;
2. (g192) - x=¢g1- (92 - ) for all g1,92 € G and all x € N.

Definition 89. A smooth action of a Lie group GG on a manifold N is an action G x N — N
which is also a smooth map.

Example 48. Let V be a (finite dimensional) vector space. The general linear group GL(V')
acts on V: for A € GL(V), v € V we define A - v := A(v).

Example 49. Denote by E(n) (“E” for “Euclidean”) the group of rigid motions of R": E(n) =
{f:R* — R"|||f(z)— f(y)|]| = ||z —y| for all z,y € R"}. Clearly the Euclidean group E(n)
acts on R™:

E(n) xR"—=R", (f,z)— f(x).

It is not entirely obvious that E(n) is a Lie group. To show that it is a Lie group, we observe
first that E(n) is generated by translations and rotations. Indeed if f € E(n) and if v = f(0)
then T'(w) := f(w) — v is also a rigid motion but 7(0) = 0. Now if 7' € E(n), and T'(0) = 0,
then, since T sends a triangle with vertices at the origin to a congruent triangle, 7" has to be
a rotation.

Next observe that we can identify E(n) with a subgroup of GL(n + 1,R) as follows. First

identify R™ with a subset of R"T!: R = {G) € R""!|v € R"}. Then E(n) = {<‘3 Qf) :
A w\ (v  [Av+w
0 1 1) 1

Since E(n) is the product O(n) x R, E(n) is a Lie group. Clearly it is a closed subgroup of
GL(n + 1,R) and the action of E(n) on R™ is smooth.

A€ O(n),w € R"} for (

Example 50. Let G be a Lie group. Then G acts on itself in three different ways:

1. Left multiplication: L : G x G — G L(g,z) = gz =: Lyx
2. Right multiplication (by inverse): R: G x G — G, R(g,z) = xg~ 1.
3. Conjugation: C': G x G — G, C(g,x) = grg~! := ¢y(x).

One can think of a smooth action of a Lie group G on a manifold N as a “smooth” group
homomorphism p : G — Diff(N), where Diff(/V) is the group of diffeomorphisms of N and
“smooth” should be defined is such a way that the map G x N — N given by (g,x) — p(g)(z)
is smooth.

Given a map of Lie groups 7 : G — H we get a corresponding map of Lie algebras 67 : g — bh.
By analogy, given an action p : G — Diff(INV') we should get a map of corresponding Lie algebras
dp from the Lie algebra g to the Lie algebra of Diff(/V)), which, for various reasons is taken to
be the Lie algebra of vector fields x (V).
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Here is one reason. Recall that for X € g the curve t — exptX in G is a one-parameter
subgroup so that
exp(s +t)X = expsXexptX.

If a Lie group G acts on a manifold N then for every X € g we have a collection of diffeomor-
phisms ¢;X (z) := (exptX) -z, which is a one parameter group since

qﬁfj_s(x) = (exp(t+ $)X) - x
= ((exptX)(expsX)) - x
= (exptX) - ((expsX) - x)

XX
= oi (o5 ().
Denote the vector field corresponding to the one parameter group {(Z)tX } by Xn, that is,

Xn(a) = |, o6 (@) = |y ((exptX) -x).

It therefore makes sense to define dp(X) = Xy. Unfortunately the map dp is an anti-Lie
algebra map:

This annoying fact is not obvious and will discussed later.

Example 51. The group G = R™ acts on R™ by “left multiplication”: (g,v) + g + v. The
Lie algebra of R™ is R™ with the trivial bracket. Consequently the exponential map exp :
Lie(R") — R™ is the identity map. Therefore Xpn(v) = & (exptX)-v= 4(tX +v) =X, a
constant vector field.

Example 52. The group G = SO(3) acts on M = R3 in the standard fashion: (A,v) —
Av. The Lie algebra of s0(3) consists of 3 x 3 skew-symmetric matrices. For £ € so((3) the
corresponding induced vector field g3 (v) = % ‘O(etg cv) = &o.

Lifted actions. If a group G acts on a manifold M, then there exists a “lifted” action of G on
the cotangent bundle T*M of M. Namely, given a group homomorphism 7 : G — Diff(M),
g — 714 € Diff(M) we get group homomorphism 7 : G — Diff(T*M) defined as follows.

Since 7, is a diffeomorphism of M, 7, 1= (d(7, 7T is a diffeomorphim of T*M. Moreover,
it is easy to check that 7, 0 7, = (150 73,)~ = Typ.

Note that a lifted action preserves the Liouville one-form a;:

(Tg) o = am
for all ¢ € G and hence preserves the symplectic form wp=pr = dagyy.

Definition 90. An action 7 of G on a symplectic manifold (M,w) is symplectic if Tqw = W
for all g € G.

Example 53. Given an action of a Lie group G on a manifold N, the corresponding lifted
action of G on (T*N,wr=y) is symplectic.
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Example 54. Let M be the two-torus 7?2 = S x 8. The two form w = df; Adfy is symplectic.
The torus G = S x S acts on M: the action is given by (A1, Xa) - (61,602) = (61 + A1, 02 + Xo);
it is symplectic.

Lemma 91. Suppose an action of a Lie group G on a symplectic manifold (M,w) is symplectic.
Then the image of the corresponding anti-Lie algebra map g — x(M) is contained in the
subalgebra of the symplectic vector fields.

Proof. For any X € g we have (T)xpt y *w = w for all + € R. Differentiating both sides with

€
respect to t we get (Texpx)*(Lx,,w) = 0. Hence Lx,,w = 0, i.e., the induced vector field X,

is symplectic. O

Recall that Lx,,w = 0 if and only if the form «(Xs)w is closed.

Definition 92. A symplectic action 7 of G on (M,w) is Hamiltonian if there is an anti-Lie
algebra map v : g — (C®(M), {-,-}), X — ¢* such that dpX = 1(Xys)w, i.e., the diagram

X g —2 \(Mw) Xy

.., anti-Lie
’Y ’Lie ‘
e

X C®(M) f
commutes.

Note that the map + being an anti-Lie algebra map means:

1. v:g — C°°(M) is linear,
2. —{pX, "1 = XY for all XV € g.

We will see later on that such a map v need not be unique.
Example 55. The symplectic action of Example 54 is not Hamiltonian (why?).
A good source of examples of Hamiltonian actions is the lifted actions.

Proposition 93. Suppose 7 : G — Diff(Q) is a smooth action of a Lie group G on a manifold
Q. The corresponding lifted action T : G — Diff(T*Q) is Hamiltonian.

Proof. Since the lifted action preserves the Liouville one-form aq, we have Lx,..,aq = 0 for any
X € g. Hence 0 = du(X71+q)ag + t(X1=Q)dag = diu(Xr+q)ag + t(X1+Q)wr+g. Consequently

UXp@)wr=@ = —d(U(X1-@)g)-
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Here we may define v(X) = ¢* to be —(X7r+@)ag. It remians to show that {pX, oV} =
—XY] for all XY € g. Now

{0, 0"} = Lxpoe”
= Lxy.o(—t(Yr@)ar)
= _L(LXT*QYT*Q)Q — L(YT*Q)LXT*QO[
= —u([Xr+Q, Yr-ql)a + 0
= —u(—[X,Y]rq)o
— 7¢[X7Y}

O

Example 56. Let (M,w) be a compact symplectic manifold with the property that its first
de Rham cohomology group vanishes: Hpp (M) = 0 ( (for example we may take M = 52 ).
Then any symplectic action on (M,w) is Hamiltonian.

Recall what the condition H} (M) = 0 means: if 0 is a closed one-form on M then 6 = df
for some function f. Hence if 7 : G — Diff(M,w) is a symplectic action, then di¢(Xp)w =0
implies that ¢(Xys)w = dp* for some function ¢X, which we know up to a constant.

We fix the constant by requiring that 0 = | M ©Xw", where n = % dim M. To show that the
action is indeed Hamiltonian with this choice of constants it is enough to check that if for some
X,Y € g we have [,; oXw™ =0and [}, o*w"” =0, then [, {p*, " }u" = 0.

Now {pX, p¥ }w™ = (Lx,,»¥)-w" = Lx,,(¢¥w") because Lx,,w = 0. Let ¢; denote the flow
of Xps. Then fM{QDXﬂOY}wn = fM Lx), (¢Ywn) =/ %‘olﬁ(sf’ywn) = %‘0 fM W(Sﬁywn) =
% ’0 Jure W =0

Let us consider a concrete special case of the above general example.

Example 57. Let M = S? = {(21,29,23) € R¥| Y 22 = 1}, and let w = (21dxa A dos +
xodxs A dry + x3dry A dxg)‘sg, standard area form. The group S' acts on S? by

T cosf) sinf 0 T
™0 | 29| = | —sinf cosf 0 T9
T3 0 0 1 T3

It is not difficult to compute that the induced vector field (%) 52 = 1:28%1 - :1;18%2 and that
L((%)Sz)w = dmg‘SQ. Consequently cp% = (x5 + const)‘SQ.

Another important source of examples of Hamiltonian group actions are linear group actions
on symplectic vector spaces.

Definition 94. A representation p of a Lie group G on a vector space V is a Lie group
homomorphism p : G — GL(V).

Note that a representation is a smooth action. Suppose (V,w) is a symplectic vector space.
A representation p : G — GL(V) is symplectic if p(g)*w = w for all g € G. In other words
a symplectic representation is a Lie group homomorphism p : G — Sp(V,w).
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Lemma 95. A symplectic representation p : G — Sp(V,w) is a Hamiltonian action of G on
the symplectic manifold (V,w).

Proof. For X € g denote the induced vector field by Xy . It is easy to check that Xy (v) =
dp(X)v where dp(V) € sp(V,w) C gl(V) = Hom(V, V). By Poincaré lemma t(Xy)w = dp*X
for some function ¢ which we can normalize by requiring that ¢~ (0) = 0. We leave it as an
exercise to check that ™ (z) = $w(Xva, z) and that the map g — C*°(V) defined by X — X
is an anti-Lie algebra map. O

16. LECTURE 16. MOMENT MAP

We start the lecture by proving a result that justifies the definition of a Hamiltonian group
action. Recall that a function f is a constant of motion for a function h on a symplectic manifold
if f is constant along the integral curves of the Hamiltonian vector field of A (see Definition 64).
A result due to E. Noether shows that symmetries are responsible for conservation laws. More
precisely we have

Theorem 96 (E. Noether). Consider a Hamiltonian action of a Lie group G on a symplectic
manifold (M,w). Let y:g — C®(M), v: X + @~ be a corresponding anti-Lie algebra map.

Let h € C*®(M) be a G-invariant smooth function. Then for any X € g the function
Y(X) = X is a constant of motion for h.

Proof. Since h is G-invariant, for any X € g we have h((exptX) - x) = h(z) for all t € R and
all x € M. Tt follows by differentiation with respect to ¢ that X (h) = 0.

By definition of ¢ and the Poisson bracket, {¢~,h} = Xys(h) = 0. Thus h is a constant
of motion for X. Hence by skew symmmetry of the Poisson bracket (cf. Lemma 65) X is a
constant of motion for h. O

Remark 97. Note that Noether’s theorem above holds under a weaker assumption. Namely it
is enough to only assume that for every element of the Lie algebra X the induced vector field
Xy is Hamiltonian; it is not necessary to assume that the map v : g — C°°(M) is an anti-Lie
algebra map.

However, in many cases the map < is an anti-Lie algebra map (for example, for lifted actions).
We'll see that this extra property of 4 has an important consequence — equivariance of a
corresponding moment map.

Remark 98. Noether originally proved the theorem for symmetric Lagrangian systems.

Example 58. We now attempt to demystify Example 36.

Consider a particle in R? in a central force field. That is, consider the manifold M = T*R3
with coordinates (q1, g2, ¢3,p1, 2, p3) and with the canonical the symplectic form w = )" dg; A
dp;. A central force Hamiltonian is a function of the form h(q,p) = 5= > p? + V({|q|[?).

The action of the group O(3) on R? preserves the standard inner product. Therefore the
potential V' is O(3)-invariant. The kinetic energy ﬁ >~ p? is invariant under the lifted action
of O(3) on T*R3, hence the whole Hamiltonian is invariant under the lifted action. The Lie
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algebra 0(3) of O(3), which consists of 3 x 3 skew-symmetric matrices, is three-dimensional.
Therefore we have three constants of motion: ji, jo and js (cf. Example 36), corresponding to
a basis of 0(3).

Which matrices in 0(3) give rise to these constants of motion?

If you are familiar with elementary physics, you may notice that the three functions ji, jo
and j3 of Examples 36 and 58 are components of one vector value function j : 7*R? — R3, the
angular momentum.

Example 59. The above example can be generalized as follows. Consider a Riemannian man-
ifold (@, g). Suppose a Lie group G acts on @) and preserves the metric g. Let V be a G
invariant function of . Then the Hamiltonian H(q,p) = %g* (¢)(p,p) + V(q) on T*Q is invari-
ant under the lifted action of G. Therefore, for any X € g we get an constant of motion ¢~ of
H.

Note that these constants of motion are not independent: if Xi,...X, is a basis of the Lie
algebra of G, then any X € g is a linear combination of the X;’s and hence ¥ is a linear
combination of pXi’s,

To make sense of these constants of motion it is useful to introduce the analog of the notion
of angular momentum for an arbitrary Hamiltonian group action. The analog is the notion of
a moment map.

Definition 99. Consider a Hamiltonian action of a Lie group G on a symplectic manifold
(M,w). Let v : g — C®(M), X — ¢ be a corresponding anti-Lie algebra map. A moment
map ¢ : M — g* corresponding to the action is defined by

(®(m), X) = ¢ (m) = 7(X)(m)
for X € g and m € M, where (-,-) : g* x g — R is the canonical pairing.

Remark 100. We can think ® : M — g* as the transpose of v provided we think of the manifold
M as a subset of the linear dual of C°°(M): each m € M defines a linear evaluation map evy, :
C®(M) — R by ev,(f) = f(m) =“lam, f)”". Then (®(m), X) = v(X)(m) =“(m,v(X))".

Remark 101. Note that a moment map corresponding to a given action need not be unique.
Recall that for a symplectic action of G on (M.w) to be Hamiltonian we require that there
exists an anti-Lie algebra map v : g — (C°°(M) with the property that dy(X) = «(Xy)w
for every X € g. Suppose 7/ : g — (C°°(M) is another anti-Lie algebra map satisfying
dy(X) = «(Xp)w. Then d(y(X) —+'(X)) = 0. Consequently the map ¢ : g — R defined
c¢(X) =v(X) —+/(X) is linear (here we tacitly assumed that M is connected).

The requirement that both v and +" are anti-Lie algebra maps amounts to

{7 (X) +e(X), A (Y) + e(Y)} = = ([X, Y]) = e([X, Y])

for all X,Y € g. Therefore, since {v(X) + ¢(X),v(Y) + ¢(Y)} = {7(X),v(Y)} = —([X,Y])),
we must have ¢([X,Y]) = 0.
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Conversely, given an anti-Lie algebra map v : g — C°°(M) with «(Xy)w = dy(X) and an
element ¢ € g* such that ¢([X,Y]) = 0 for any X,Y € g, the map v’ = v+ ¢ is another anti-Lie
algebra map satistying ¢(Xy/)w = dy/(X) for all X € g.

Moment maps in general are difficult to compute directly from the definition. Three cases
from an exception: lifted actions on the cotangent bundles, linear actions and actions on
coadjoint orbits.

Example 60 (Lifted actions). Suppose 7 : G — Diff(Q) is a smooth action of a Lie group
G on a manifold Q. Let 7 : G — Diff(T*Q) denote the corresponding lifted action. We have
seen (Proposition 93 that the lifted action of G on (T*Q,w = wr+qg) is Hamiltonian:

UXTeQ)w = —d((X1-Q)agq)-
where ag is the Liouville one-form. That is, we saw that we should define X = —i(X7+q)ag.

Let us compute the corresponding moment map. Let p € T;/Q) be a covector. We claim that

©X(q,p) = —(p, Xg(q)). Indeed, since the action on T*Q is lifted, we have dr(X7+g)(q,p) =
Xq(q) where 7 : T*Q — @ is the standard projection. Therefore by definition of ag we have

—u(X1+Q)aq(q,p) = (aQ(¢;p), X1q(q,p)) = (p,dm(X1+q(q,p))) = (P, Xq(q)). We conclude
that the moment map ® : T*Q) — g* is defined by

(@(m), X) (g, p) = (p, Xq(a))
for all X € g and all (¢q,p) € T#Q.

In a number of special case, one can make this formula more concrete. For example let G be
any connected Lie group, ) = G and let the action of G on @) be given by left multiplication:
(g9,a) — ga = Ly(a). Let us compute the induced vector fields X¢(a):

Xg(a) = %}OLexth(a) = %}O(exth) ca = %loRa(exth) = (dRy)1(X),

where R, denotes right multiplication by a. Therefore ¢ (a,n) = (n,dR.(X)) = (dRLn, X)
where dR, : TG — T,G and (dR,)" : TG — T}G = g*. We conclude that in this case the
moment map ¢ : T*G — g* is given by
®(a,n) = dRg1.
We can specialize this example further by considering G = R™. Then R,(q) = a + ¢q and
hence dR, = id. Therefore the moment map ® : T*R" = R" x (R")* — (R™)* is simply the
projection ®(q,p) = p, i.e., it is the linear momentum.

Example 61. Let (V,w) be a (finite dimensional) symplectic vector space. The “birth cer-
tificate” representation of the symplectic group id : Sp(V,w) — Sp(V,w) is, by Lemma 95, a
Hamiltonian action of Sp(V,w) on (V,w). The map 7 : sp(V,w) — C*°(V) can be chosen to be
X + ¢~ (v) = fw(Xv,v). Therefore the moment map ® : V' — sp(V,w)* is given by

(®(v), X) = %w(Xv,v).



60 E. LERMAN

Recall that we have an isomorphism between the dual of the Lie algebra of the symplectic
group and the symmetric 2-tensors on V' (Homework 17) :
¥ S*(V) — sp(V,w)*
(19) 1
voOw— {X — §w(Xv,w)},

where v ® w denotes the symmetric tensor product of v and w. Therefore
(@), X) = (B(v), X).
Thus, under the identification ¢ of sp(V,w)* with S?(V) the moment map ® is given by
P(v)=v0Ow.

We’d like to generalize this example to arbitrary symplectic representations p : K —
Sp(V,w).

Lemma 102. Suppose we have a Hamiltonian action of a Lie group G on a symplectic manifold
(M,w). Let ® : M — g* denote a corresponding moment map. Let p: K — G be a Lie group
homomorphism. Then the action of K on M defined by

(k,m) — p(k) - m
1s also Hamiltonian and a corresponding moment map ¥ s given by
U= (5p)" o @,
where 6p : € — g is the Lie algebra map induced by p and (6p)T : g* — € is its transpose.

Proof. For any X € ¢ the induced vector field X, is defined by X/ (m) = % ‘O(p(exp tX))-m.
Now, by the universal property of the exponential map p(exptX) = exp(dp(tX)). Hence
Xnar(m) = (0p(X))ar(m) where the right hand side denotes the vector field induced by dp(X) €

g. By definition of the moment map
d(¥, X) = o(Xpr)w = ((0p(X)) m)w = d(®, 5p(X)).

Finally, since dp : € — g is a map of Lie algebras, the map ¢ — C°°(M) given by X +— (P, 5p(X))
is an anti-Lie algebra map. U

It follows from Lemma 102 above that a moment map & for a representation p : K — Sp(V,w)
is given by ®(v) = ((0p)7 0 ¥)(v ® v) where ¥ : S2(V) — sp(V,w)* is defined in equation (19)
above.

Adjoint and coadjoint representations. Recall that a Lie group G acts on itself by conjuga-
tion: for all g € G we have a map ¢, : G — G defined by ¢,(a) = gag™!, and ¢ oc), = cgh- We
therefore have the Adjoint representation Ad : G — GL(g) defined by Ad(g)(X) = d(cy)(1)X
where 1 € G is the identity element. Since ¢4 0 ¢y, = cgn, Ad(g) 0 Ad(h) = Ad(gh), so Ad is a
group homomorphism, i.e., Ad is indeed a representation. The action of a Lie group G on its
Lie algebra g by the Adjoint representation is called the Adjoint action.
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Given a representation p of a group G on a vector space V, there exists an associated
representation pf of G on the dual vector space V*: pf(g)f := £ o p(g~') for £ € V* and
g € G. Thus associated to the Adjoint representation Ad : G — GL(g) we have the coadjoint
representation Ad! : G — GL(g*):

(20) (Ad'(9)f,X) = (f, Ad(g~")X)
for feg", X egand g € G.
Definition 103. Let G x Q — @ be an action of a group G on a set ). An orbit of an
element x € @ is the set
G-x:={yeQ|y=g-zfor someg € G}.
It is an important fact that the orbits of a coadjoint action (coadjoint orbits for short) are

naturally symplectic manifolds. We’ll see this in the next lecture.

Definition 104. Let G be a group acting on two sets (1 and Q2. A map [ : Q1 — Q2 is
equivariant if f(g-q) =g - f(q) for all g € G and all g € Q1.

Theorem 105. Let (M,w) be a symplectic manifold and let G x M — M be a Hamiltonian
actions of a connected Lie group G. Then a corresponding moment map ® : M — g* is
equivariant: for any g € G and any m € M

®(g-m) = Ad'(g)®(m).
To prove the theorem we need a number of technical results.

Lemma 106. Let G be a connected Lie group. Then any neighborhood U of the identity
generates G as a group: for any g € G there are uy,... ,ur € U (k depends on g) such that

g=1ui...ug.

Proof. Let U™ ={uy...u, | u; € U, 1 <14 <r}, the set consisting of products of r elements
of U. Then U! = U. Also U? = U,cyaU, hence is open. It follows by induction that the sets
U" are open for all r. Consequently the set V =J;2, U !'is a connected open subgroup of G. If
V is not all of G then the cosets of V partition G into a union of open sets, which contradicts
connectedness of G. Therefore G =V = |Ji°, U. O

Lemma 107. Let G be a connected Lie group. Then any element g of G is of the form
g =-exp Xiexp Xo...exp X
for some X1, Xo, ... Xy € g (k depends on g).

Proof. Since the exponential map is a local diffeomorphism, there exists a neighborhood of the
identity U in G such that all u € U are of the form exp X, X € g. Now apply Lemma 106. [

Proposition 108. Let f : M1 — M3 be a smooth map between two manifolds. Let Y; be a
vector field on M;, i = 1,2. Let i denote the flow of Y;. If df (Y1) = Ya o f, then f(¢}(z)) =
©2(f(x)), for allt € R and x € M;.
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Proof. Fix * € M. Let v1(t) = f(of(z)) and let y2(t) = @?(f(x)). Bother curves pass
through f(z) at ¢ = 0. The curve 2 is integral curve of Y5. So to prove that the two
curves are equal it is enough to check that v, is also an integral curve of Yo. Now %71 (t) =

Ff(et (@) = df(fel(x) = df(Vi(pf(2))) = Ya(f(pi(x))) = Ya(n(t). Therefore vi(t) =
n2(t), e fei(z)) = i (f(@)). _

Theorem 109. Let G be a Lie group with the Lie algebra g. Let ad : g — gl(g) be the map
of Lie algebras corresponding to the Adjoint representation Ad : G — GL(g). Then for all
X,Yeg

ad(X)Y = [X,Y],
where [-, -] is the bracket on g.

Proof. This amounts to unwinding a string of definitions. See [Warner, p. 112]. O
Remark 110. The map of Lie algebras ad : g — gl(g) is called the adjoint representation.

Note that by definition ad(X)(Y) = %’tZOAd(exp tX)Y, which is the value of the vector
field Xy on g induced by the adjoint action. In other words the theorem above asserts that

Corollary 111. Let G be a Lie group, X € g. Then the vector field X g induced on g* by the
coadjoint action satisfies

(Xg-(f),Y) = =(/,[X,Y])
for feg andY € g. That is,
Xg(f) = —ad(X)" f.
Proof. For X,Y € g, f € g* and t € R we have
(Ad'(exptX)f,Y) = (f, Ad(exp(—tX))Y).
Now differentiate both sides with respect to ¢t at t = 0. ]

Proof of Theorem 105. 1t follows from Lemma 107 and Proposition 108 that it is enough to
show: for X € g and m € M

(21) d®(Xnr(m)) = Xg=((m)).
Now for any Y € g = (g*)*
(d®(Xpr(m)),Y) =Y 0 d®(Xp(m))
=d(Y o ®)(Xp(m)) since Y :g" — R is linear
=Xy(Yo®)(m)=Xy({(P,Y))(m) since Y o®(m)= (®(m),Y)
={(®,X),(®,Y)}(m) since Xp(v) = {(®,X),v} for any function
= (®(m), —[X,Y]) since {¢¥,¢"} = ¢~
= (Xg(®(m)),Y) by Corollary 111.
Therefore d®(Xys(m)) = Xg«(®(m)) and we are done. O
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We finish the lecture with a corollary of Lemma 107.

Corollary 112. Let (M,w) be a symplectic manifold with a Hamiltonian action of a connected
Lie group G. Let ® : M — g* be a corresponding moment map.
The moment map carries enough information to recover the action of G on (M,w).

Proof. By Lemma 107 it is enough to recover the actions of the elements of the form exp X,
X € g. But the curves t — (exptX) -z, © € M, are integral curves of the Hamiltonian vector
field of (®, X). Therefore if we know the moment map ®, we also know exp X - x for X € g,
xe M. ]

The corollary can be sharpenned as follows. Let v : g — C°°(M) be an anti-Lie algebra map
from a Lie algebra g to the Poisson algebra on a symplectic manifold (M,w). It is a difficult
theorem (which we won’t attempt even to sketch a proof of) that given a Lie algebra g, there
exists a connected and simply-connected Lie group G whose Lie algebra is g. The map ~ allows
us to define the action of elements of G of the form exp X, X € g. The fact that ~ is an anti-Lie
algebra map together with simple connectedness of G guarantees that these actions cohere into
an action of G.

Homework Problem 19. Consider the action of S' on C" given by e¥ - (21,...,2,) =
(€?21,...,e"%2,). Show that the action preserves the imaginary part of the Hermitian inner

product (which is a symplectic form). What is a corresponding moment map? Is it unique?

17. LECTURE 17. COADJOINT ORBITS

In this section we study coadjoint oribts. We start by collecting more examples of Lie groups
and their Lie algebras.

Example 62. Let G = GL(n,R). The conjugation is given by cy(a) = gag~!. Hence

Ad(g)(X) = %‘Og exptX g1 = gXg!. Therefore, [Y, X] = ad(Y)X = %‘O(exptY)X(exp(—tY)) =
YX - XY.

Example 63. Let G = GL(n,C), the invertible linear maps on C". Note that GL(n,C) is
a subgroup of GL(2n,R) since C* = R?" as real vector spaces. Same argument as in the
previous example shows that the Lie bracket on the Lie algebra gl(n,C) is also given by the
commmutator [V, X] =YX — XY.

Example 64 (Unitary group). The unitary group U(n) is the group of unitary matrices. That
is,

U(n)={A € GL(n,C) | AA* =1}
where A* is the conjugate transpose of A. It is not hard to see that the Lie algebra u(n) of
U(n) is

u(n) ={X € gl(n,C) | X*+ X =0}
the space of skew-Hermitian matrices, and that the Lie bracket on u(n) is the commutator.

Note that there is a way to identify the u(n) with its dual u(n)*. Namely, (X,Y) = —tr XY is

a symmetric pairing invariant under conjugation. Since any skew-Hermitian matrix is conjugate
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to a diagonal matrix, and since —tr X? > 0 for a non-zero skew-Hermitian diagonal matrix
X, the pairing is a positive definite inner product. Since the inner product is invariant under
conjugation, the corresponding isomorphism @ : u(n) — u(n)*, X — (X,-) intertwines the
Adjoint and the coadjoint actions: 1(Ad(g)X) = Ad'(1)(X)).

Example 65. Let G = R” with the group operation given by vector addition. Since R" is
abelian, c¢4(a) = a for all g € R™. Therefore Ad(g) = id and hence [X,Y] = ad(X)Y = 0 for
all X, Y € g=R".

Example 66 (Heisenberg group). Let (V,w) be a symplectic vector space. Let H =V x R.
We make H into a Lie group by defining the multiplication to be (v1,t1) - (ve,ta) = (v1 +
v2, 3w(v1,v2) + t1 + t2). The element (0,0) is clearly the identity element. Show that the Lie
bracket on the Lie algebra $ ~ V x R of the Heisenberg group is given by [(X, \), (Y,u)] =
(0,w(X,Y)). Hint: Theorem 109.

Definition 113. Suppose a group G acts on a set ). The isotropy subgroup of an element
q € @ is the set

Gy={9€G|g-q=q}

It is easy to see that G, is indeed a subgroup. Note also that the evaluation map ev, :
G — @ given by evy(g) = ¢ - ¢ induces a bijection between left cosets G/G, and the orbit
G-qg={yeQ|y=g-q for someg € G}.

Moreover, if G is a Lie group and the action Gx@Q — @ is continuous then the evaluation map
evy is continuous. Consequently the isotropy group G, := (evq)*l(q) is closed. Furthermore
it follows from the closed subgroup theorem (Theorem 87) that the isotropy subgroup Gy is a
Lie subgroup of G.

Suppose G is a Lie group and H C G is a closed subgroup. Then the coset space G/H
inherits from G a topology making the projection 7 : G — G/H, w(g) = gH continuous.

Proposition 114. Let G be a Lie group and H be a closed subgroup of G. Then the coset
space G/H is a smooth manifold, Tyg(G/H) ~ g/bh and the action of G on G/H given by
(9,aH) — gaH is smooth.

Sketch of a proof. Choose a subspace m of g such that g = h & m as vector spaces. Consider
the map h @ m — G defined by (X,Y) — expXexpY. This is a diffeomorphism near
0®0 € hdm. For a small enough neighborhood U of 0 in m the set exp(U) is a model for
G/H, ie. m:exp(U) — exp(U)H C G/H is a homeomorphism. Thus moexp : U — G/H
gives coordinates on G/H near 1H. Then for any g € G the map moLjoexp: U — G/H gives
coordinates near gH. Note that m ~ g/h and that m ~ Ty (G/H). O

Proposition 115. Let G be a Lie group acting smoothly on a manifold M. Then for every
x € M the map ¢ : G/G, — M, $(9G;) = g - x is a one-to-one immersion (where G, denotes
the isotropy group of x). Consequently if the group G is compact, the orbits of G are embedded
submanifolds of M.
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Proof. It is easy to check that the map ¢ is well-defined and is one-to-one. The smoothness of
¢ follows from the fact that for a fixed x € M the map G — M, g — g -z is smooth and from
the definition of the smooth structure on G/G,.

Recall that the group G acts on G/G; by g - aG, = gaGy. Since ¢(g - aGy) = g - ¢(aGy),
i.e., since ¢ is equivariant, and since the action of G on G/G, has only one orbit, it is enough
to check that the differential d¢ is injective at one point. For example, it is enough to check
that d¢(1G,) : Tha,(G/Gy) — T, M is one-to-one.

Note that for X € g

Xyu(z) =0 %‘tzo(exth)-x:O
= d((expsX)-()) (jt‘tzo(exp tX) - x) =0 foralls
= %’tzs(exth)-:U:() for all s
— expsX € G, forall s

<X € g, the Lie algebra of G, by the closed subgroup theorem.

Consequently the map
9/89: > TeM X + g, — Xy(x)
is well-defined and is injective.
Since dr : g = T'G — Tig,(G/G;) induces the isomorphism of g/g, and of the tangent
space Ti¢, (G/Gy), and since ¢ o w(g) = g - it follows that d¢(1G,) is injective. O

Note that the above argument shows that for an orbit G - x, the tangent space T, (G - )
satisfies
T.(G x) = {Xu(2) | X € g}.
In particular if G- f is a coadjoint orbit of G, then T¢(G- f) = {Xg(f) | X € g} = {—ad(X)T f |
X € g}

Theorem 116 (Kirillov-Kostant-Souriau). Let G be a Lie group. The coadjoint orbits O =
Ad'(G) fo carry a natural symplectic form wo defined as follows :

wo()(Xg(f), Y (f)) = (f, [ X, Y]),

for X, Y € g and f € O. Moreover the action of G on (O,we) is Hamiltonian and a corre-
sponding moment map is the inclusion O — g*.

Proof. We first show that w = wp is well-defined. For this we need to check that if Xg-(f) =0
then (f,[X,Y]) = 0 as well. But (f,[X,Y]) = (f,ad(X)Y) = (ad(X)Tf,Y) = (—Xg(f),Y)
by Corollary 111. So w is well-defined.

The smoothness of w follows from the fact that w(f)(Xg(f),Ye(f)) = (=Xg(f),Y) =
(Xge, —doY )(f) where ¢¥ € C°°(0O) is the smooth function defined by ¢¥ (f) = (f,Y)
Yio(f)-
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To prove that the form we is non-degenerate we check that w(f)(Xg(f),Yg(f)) = 0 for all
Y € g implies that Xg(f) = 0. Now
0= w(f)(Xg (), Yo (1) = (ad" (X) £, Y)
for all Y € g implies that 0 = ad” (X)f = —Xg(f). Therefore the form we is non-degenerate.

Next we check that the form is G-invariant, i.e., that (Ad'(g))*w = w for any g € G. On the
one hand, by definition

((Ad" (9))* ) (/) (X (), Ye= () = w(Ad' (9)())(dAd' () Xg- (), dAd (9) Vg (f))

and
444 (9)(Xg () = |y Ad @) (Ad (exp 1))
ah} d'(gexptX)f
:%‘OAdT(g(exth) HAd'(9)f
= 2] Ad (exp(tAd(9) X)) Ad (g)
= (Ad(g)X) g (Adt(9)f)
Therefore

*

((Ad'(9)"w) (/) (Xg- (), Yo ()
= w(Ad'(9)f) ((Ad(9)X)g (Ad'(9) 1), (Ad(9)Y g (Ad'(9) 1))

= (Ad'(9)f.[Ad(9)X, Ad(9)Y])
= (Ad'(g)f, Ad(g9)[X,Y]) since Ad(g):g— g is a Lie algebra map
= (/,[X,Y])

which proves G-invariance.

Finally to prove that the form w is closed, it is enough to show ¢(Yy-)dw = 0 for all Y € g.
Since w is G-invariant 0 = Ly ,w = di(Yg )w + (Vg )dw = ddpY + 1(Yg+)dw. Hence (Y )dw =
0.

To summarize: we proved w is well-defined, smooth, symplectic, invariant. We also showed
that for all Y € g we have dp¥ = 1(Yg+ )w where oY = Y‘O' Consequently a moment map @

satisfies (®(f),Y) = oY (f) = (f,Y) . Therefore ®(f) = f.
It remains to show that @ is equivariant. Now {¢*, oY }(f) = (Xg(f),Y) = (—ad(X)T f,Y) =

—(f.1X,Y]) = =l51I(f). =
We now give an example to show that adjoint and coadjoint orbits are very different.

Example 67 (Heisenberg group). Recall the definition of the Heisenberg group: one starts
with a symplectic vector space (V,w) and sets H == V x R with multiplication give by
(v,t) - (u,8) = (v +u, sw(v,u) +t + s). Recall also that (v,t) - (0,0) = (v,t) so (0,0) =1
(v,1) - (=v,—t) = (0,0) and that cq,u(u,s) = (v,t) - (u,8) - (—v,~1) = (v + u, Tw(v,u) +
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t+s) (—v,—t) = (u, 3wV +u,—v) + 3(v,u) +t +s —t) = (u,s + w(v,u)). Consequently
Ad(v,t)(X,z) = (X, + w(v,X)). It follows that
(X} xR if X #0,

Ad(G)(X,x) = {{(0 )} if X =0.

Note that the dimensions of adjoint orbits are zero and one. Note also that ad(Y,y)(X,z) =
(0,w(Y, X)), ie., [(Y,y), (X, z)] = (0,w(Y, X))

Let us now compute the coadjoint action and coadjoint orbits. Let (Y*, y*) €
VEx R (X,z) € g =V xR. (Ad'(v,t)(Y*,y*),(X,z)) = (Y*, y*), Ad(—v, —t)(X,x)) =
(Y*,57), (X, z—w(v, X))) = (Y*, X) = (y* 0w (v)) (X) +{y*, 2) = (V" —y*owk(v), y7), (X, 2)).
Therefore

Ad (0, ) (Y*,y*) = (Y* = y* 0 wi(v),y).
We conclude:
{(Y",0)} if y* =0,
V*x{y*} ify*#0.

Homework Problem 20. Let G be the subgroup of GL(2,R) consisting of the matrices

{(3 ’{) la,b € R,a # 0}

This is the so called “ax+b" group, the group of affine motions of the line. Show that the adjoint
orbits are either one- or zero-dimensional. Compute the coadjoint orbits and the corresponding
symplectic forms.

AdH(G) (Y, y") = {

18. LECTURE 18. REDUCTION

Consider a system of particles in R? interacting via a potential which is invariant under
translations: V(#y + ... ,Zn + ¥) = V(Z41,...,ZxN). In this case the linear momentum of
the system is conserved. It is then standard to fix the total linear momentum and pass to a
coordinate system located at the center of mass of particles.

Having passed to a center of mass coordinates we may discover that the potential is rota-
tionally invariant, so that the angular momentum of the system is conserved. In this case we
would fix the angular momentum and pass to a steadily rotating coordinate system.

We'll see that both of these procedures are instances of symplectic reduction, a procedure
invented independently in early 1970’s by K. Meyer and by J. Marsden and A. Weinstein.

Mathematically the procedure is the “correct” way to define quotients in the symplectic
category. Suppose we have a Hamiltonian action of a Lie group G on a symplectic manifold
(M,w) with a corresponding moment map ® : M — g*. If we were to define the symplectic
quotient of the manifold M by the action of G to be the ordinary quotient M /G, we would
have two problems:

1. the quotient M /G need not be a manifold
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2. even if the quotient were a manifold, there would be no reason for it to be even-dimensional,
let alone admit a symplectic structure.

We get around these to problems by using the moment map. Suppose zero is a regular value
of the moment map ®. Then the zero level set ®~1(0) is a submanifold of M. Since ® is
equivariant and 0 is fixed by the coadjoint action, the action of G preserves ®~1(0). It turns
out that the action of G on ®~'(0) has to be (almost) free. In the good case the action is
actually free and the quotient My := ®~1(0)/G is a manifold. Moreover, we’ll see that My has
a natural symplectic form wp such that 7wy = w|g-1(g), where 7 : ®=1(0) — My is the orbit
map. The manifold My is called the reduced space at zero or the symplectic quotient at
Zero.

The above construction and its various generalizations are now in wide use in different
areas of mathematics. The original motivation however came from the study of symmetric
Hamiltonian systems which we will now sketch. Let (M,w,® : M — g*) be as above, and let
h € C°(M)% be a G-invariant function. We will refer to the quadruple (M,w,® : M — g*, h)
as a symmetric Hamiltonian system. Recall that for any X € g, the function (®, X) is
a constant of motion for an invariant function h. Therefore the flow v} of the Hamiltonian
vector field X}, of h preserves the level sets ®~1(u), u € g*.

Lemma 117. Let (M,w,® : M — g* h) be a symmetric Hamiltonian system. The flow
Yy = P of the Hamiltonian vector field of h is G-equivariant: (g -m) = g - y(m).

Proof. Since the function h and the symplectic form w are G-invariant, the Hamiltonian vector
field X, of h is G-invariant as well. Consequently its flow is G-equivariant (cf. Proposition 108).
O

It follows that the flow ¥ : ®~1(0) — ®~1(0) induces a flow v : ®71(0)/G — ®~(0)/G
on the symplectic quotient My = ®~1(0)/G. On the other hand, since h is G-invariant, the
restriction h|g-1(g) descends to a function hg on Mp. The last piece of the reduction procedure

is the claim that the flow of the Hamiltonian vector field ¢f° of hg on (My,wp) is the induced
flow ’lﬂt.
Let us illustrate all of the above ideas in a simple example.

Example 68. Let h(q,p) € C®(T*R3) be a smooth function on the cotangent bundle of the
three-space. Suppose h(q1, g2, g3 +a,p1, p2, p3) = h(q1,q2, 43, p1, P2, p3) for all a, i.e., h does not
depend on the third position coordinate g3. The assumption is equivalent to: the function h is
G-invariant where G = R acts on T*R? by translations in ¢3. Note that this is a lift of the action
of R on R3, hence is Hamiltonian. The moment map is easy to compute. For example we can
do it from the first principles: the induced vector field is 8%3. Since L(é%) > dg; N\ dpy = dps,
we may choose the moment map to be ®(q,p) = p3. The map is conserved by the flow of h.
This follows from the lemma above, but one can also see this directly: Hamilton’s equations
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are
3 oh
9 = 3.

(22) {,_j@ ,
pl - aqz

hence p3 = _6%, = 0 since h is independent of g3. The zero level set of the moment map

is ®71(0) = {(¢,p) : p3 = 0}. Tt is not hard to see that ®~1(0)/G is symplectomorphic
to T*R2. Indeed consider the embedding j : T*R?> — ®~1(0) given by j(z1,z2,71,m2) =
(w1, 22,0,m1,72,0). The embedding clearly parameterizes the orbits of G in the level set ®~1(0),
hence the quotient ®~1(0)/G is T* R? as a differntial manifold. Note also that j*w = dxi Adn +
dxzo A dno. Hence w‘qu(o) = dq1 Ndp1 +dga Adpa +dgs A d0 = dgy A dpy + dga A dpa = 7 (§*w)
where 7 : ®71(0) — T*R? is the projection 7(q1,q2,q3,p1,02,0) = (q1,q2,p1,p2). Therefore,
under the identification of ®1(0)/G with T*R?, the reduced form wy is j*w.

The restriction h|g-1(g) descends to a function hg on the quotient ®~1(0)/G. Under the iden-
tification of the quotient with T*R2, ho(x1,z2,71,72) = h(z1,22,0,11,12,0). The Hamilton’s
equation for the function hg on T*R? are

s Oh
{%—m
- Oh
i = 5

These equations carry less information than the equations (22): we dropped the equation
g3 = g—}fg. They do, however, give us the flow of X} modulo the action of the group G. Note

also that the restriction of the Hamiltonian vector field of h to ®~1(0) does project down under
7 to the Hamiltonian vector field of hg on T*R? = ®~1(0)/G.

We now start developing the necessary mathematical background. Recall that a continuous
map f : X — Y between two topological spaces is proper if the preimage under f of a compact
set is compact.

Definition 118. An action of a Lie group G on a manifold M is proper if the map G x M —
M x M defined by (g, m) — (g -m,m) is proper.

Note that an action of a compact group is automatically proper. Proper actions have a
number of good properties: all the isotropy groups are compact, all orbits are closed, the orbit
space is Hausdorff. We will prove the latter two properties later if we have time. The first one
is easy to prove.

Definition 119. An action of a group G on a set X is free if for any g € G, z € X, the
equation g - x = x implies that g = 1.

Example 69. Consider the flow of a vector field 8%1 + aa%Q on T? for a irrational. The flow
is an action of the real line R. The action is free but not proper. All the orbits are dense. The
quotient is not Hausdorff.

Remark 120. When a group G acts on a set X, we have a natural map 7 : X — X /G which
sends a point in X to its orbit in X/G. We will refer to 7 as the orbit map.
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Definition 121. A fiber bundle a quadruple (N, B, F, 7) where

1. N is a manifold called the total space,

2. B is a manifold called the base,

3. F'is a manifold called a typical fiber,

4. w: N — B is a smooth map, called the projection, such that for all b € B there exists
a neighborhood U of b in B and a diffeomorphism + : U x F — II"Y(U) C N with
Y(u, f) € 7~ (u) for all u € U. In other words, the diagram

UxF

where pri(u, f) = u, commutes.

It follows from the definition that = : N — B is a submersion and that for all b € B the
fibers 7~1(b) are diffeomorphic to the typical fiber F. We will often write F — N —— B to
denote the fiber bundle with total space N, base B, typical fiber F' and projection 7. Also one
often refers to the total space N as a fiber bundle over B.

Example 70. Let B and F be any two manifolds, N = Bx F, w : Bx F — B the projection
onto the first factor. This is a fiber bundle called a trivial bundle.

Example 71. Any vector bundle is a fiber bundle.

Example 72. Let S?"~! = {2 € C"|||z||> = 1} be the standard odd-dimensional sphere.
It is a fiber bundle over the complex projective space CP"~! = {/|/ a line in C"} = (C"
{0})/C* ={z]|z € C" \ {0},z # 0}/ ~ where z ~ Az, for any A € C, A\ # 0. The projection
m: 8%t — CP"!is given by 7(z) = [2], where [2] is the complex line through 2.

To check that ST — S§?*»~1 5, CP" ! is a fiber bundle, we need to produce trivializations.
Let U; = {[2] € CP"1| 2, # 0}. Define ¢; : S1 x U; — S2=1 by y(e?, [2]) = & CLn)

Gzl

Definition 122. Let G be a Lie group. A fiber bundle of the form G — P - B is a
principal G-bundle if G acts on P and for all b € B, there exists a neighborhood U of B and
a trivialization ¢ : U x G — 7~ 1(U) which is equivariant, i.e. g-(u,a) = ¥ (u, ga).

Example 73. The bundle S' — $2"~1 5 CP"! is a principal S'-bundle.

Note that if G — P — B is a principal bundle, then the action of G on P is free, proper
and transitive on the fibers. The converse is also true.

Theorem 123. Suppose a Lie group G acts freely and properly on a manifold P. Then the
quotient B = P/G is a Hausdorff manifold and the orbit map m : P — B makes P into a
principal G-bundle over B.
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Proof. Postponed indefinitely. See Appendix B of Cushman and Bates, Global Aspects of
Classical Integrable Systems for details. O

We now make two blanket assumptions for the rest of this lecture:

1. All actions are proper.
2. If an isotropy group of a point is zero-dimensional then it is trivial.

The second assumption has content: consider the action of S* on $2 € C2 given by - (z1, 20) =
(A2z1, Az2). The isotropy group of (1,0) is {#1}. All other isotropy groups are trivial.

We can now state the two main theorems of symplectic reduction (keep in mind the two
blanket assumptions we have made!).

Theorem 124 (Marsden-Weinstein, Meyer). Consider a Hamiltonian action of a Lie group G
on a symplectic manifold (M,w) with a corresponding moment map ® : M — g*. Suppose 0 is
a regular value of the moment map. Then ®~1(0) is a submanifold of M.

Moreover, the action of G on ®~1(0) has zero dimensional isotropy groups. Hence My :=
®=1(0)/G is a smooth manifold and the orbit map 7 : ®~1(0) — My makes ®~1(0) into a
principal G bundle over M.

Finally, there exists a symplectic form wg on My such that 7wy = w\‘bq(o).

Definition 125. The symplectic manifold (My,wy) is called the reduced symplectic space
at zero. It is also referred to as the symplectic quotient at zero and is denoted by M//G.
The later notation is often used when more than one group is involved.

Suppose G — P - B is a principal G bundle and suppose h € C*®(P) is a G-invariant
function. Then there exists a unique function hg € C°°(B) such that 7*hg = h: hg is defined

by ho(m(p)) = h(p).

Theorem 126 (Marsden-Weinstein, Meyer). Let (M,w,® : M — g*, h) be a symmetric Hamil-
tonian system. Suppose that 0 is a regular value of the moment map ®. Let w: ®~1(0) — My
denote the orbit map; let hg be the unique function on My such that m*hg = h]qu(o).
The Hamiltonian vector field X}, of h on M and the Hamiltonian vector field Xp, of ho on
My are w-related:
dr(Xp) = Xp, o .

The rest of the lecture is devoted to the proof of the Marsden-Weinstein-Meyer reduction
theorems. We start by recalling a few definition and facts.

e If V' a vector space and U C V a subspace, then the annihilator U° of U in V* is the
subspace {¢ € V* \f’U = 0}.

e If (V,w) is a symplectic vector space and U C V is a subspace, then the symplectic
perpendicular of U in V' is the subspace U* = {v € V |w(v,u) = 0,Vu € U}. Recall also
that (U¥)¥ =U.

e Suppose a group G acts on a manifold M. Then the tangent space to the orbit G - x at
re M is

To(G - x) = {&m(z) | € € g},
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where &yr(x) = % . exp(t€) - x. The Lie algebra of the isotropy group G, of x is

9o ={S € g &u(z) =0}
The following easy observation is crucial in the proof of the reduction theorems.

Lemma 127. Suppose a Lie group G acts in a Hamiltonian fashion on a symplectic manifold
(M,w) with a corresponding moment map ® : M — g*. Then for x € M, v € T,M, and

§€g,
(23) (d®y(v), &) = w(z)(Em(z),v).

, U
Proof. Since (-,§) : g° — R is linear, (d®.(v),&) = d((®,8))2(v) = w(z)(€am(x),v) by the
definition of the moment map. (|

Corollary 128. Suppose a Lie group G acts in a Hamiltonian fashion on a symplectic manifold
(M,w) with a corresponding moment map ® : M — g*.
1. The annihilator of the image of the differential of the moment map at x € M 1is the
isotropy Lie algebra of x:
(Image d®,)° = g,.
2. The kernel of the differential of the moment map at x € M is the symplectic perpendicular
to the tangent space to the G-orbit through x:

ker d®, = (T,(G - z))*®

Proof. Proof of (1): As we recalled above, a vector £ is in the isotropy Lie algebra of x iff
Ev(z) = 0. Since the form w(z) is nondegenerate, the latter is true iff for all v € T, M
0 = w(x)(&y(z),v). But w(z)(Ey(x),v) = (dPy(v),£) by Lemma 127. Hence & € g, iff £
annihilates the image d®, (T, M).

Proof of (2): A vector v is in the kernel of the differential d®, iff 0 = (d®,,&) for all £ € g.
Hence by Lemma 127, v € kerd®, iff 0 = w(z)(&a(x),v) for all £ € g. Since T,(G - z) =
{&m(z) | € € g}, it follows that v € ker d®,, iff v € (T(G - x))*®). O

Corollary 129. Suppose a Lie group G acts in a Hamiltonian fashion on a symplectic manifold
(M,w) with a corresponding moment map ® : M — g*.
A point x is a regular point of ® iff the isotropy group of x is zero dimensional.

Proof. A point z is a regular point of the moment map & iff the annihilator of the image of
the moment map is zero. By part (1) of Corollary 128, the annihilator of the image is the Lie
algebra of the isotropy group G,. Hence z is a regular point of @ iff G, is zero dimensional. [

Combining the above corollary with our blanket assumptions we see that if zero is a regular
value of the moment map then the action of G on ®~1(0) is free. Since we assumed all actions
are proper, it follows from Theorem 123 that the zero level set ®~1(0) is a principal G' bundle
over the quotient My = ®~1(0)/G.

To finish the proof of Theorem 124, it is enough to show that there exists a two form wy on
Moy with m*wy = w|¢_1(0) and that wq is symplectic.
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Notation 1. If a group G acts on a manifold M, we write 7, for the image of g € G in the
diffeomorphism group Diff(M).

Proposition 130. Let G — P 5 B be a principal G bundle. If a form v € Q*(P) satisfies

1. v is G invariant: Tg*V =v and
2. &)y =0 forallé €g
then there exists a form vy € Q such that v = 71y.

A differential form on P which is a pull-back by 7 of a form on the base B is called basic.
Note that if vy € Q*(B) is a form on the base then since 7 is constant on the orbits of G, we
have that 7*vg is G invariant and that «({a7)7* v = 0 for all £ € g, so the two conditions above
are necessary for a form to be basic. The content of the proposition is that the two conditions
are also sufficient.

Proof. Suppose v € Q4(P) is a g-form satisfying the two conditions. We want to define a form
vy € Q4(B) such that 7"y = v.

Fix b € B and let p be a point in 771(b). The differential dr, : T,P — T, B is surjective and
its kernel is precisely the tangent space to the orbit G - p. Let v1,...,v4 € T, B be a collection
of ¢ vectors. Since dm, is onto there exist v1,...,0, € T,P such that dn(7;) = v;, 1 <@ < gq.
We'd like to define vg(b)(v1,...,vq) = v(p)(01,...,74). For the definition to make sense we
need to check that it doesn’t depend on the choices made.

Say dm(v1) = v1 = dm(v1). Then v(p)(v1,...,0¢) = v(p)(V1—01,02, - ,0q)+v(p) (01,02, -+ ,Tq) =
0+ v(p)(v1,02,-- - ,0q) since dr (v — 1) = v1 —v1 = 0 hence 01 — 1 = & (p) for some ¢ € g.
Therefore v4(b)(v1, .. .,04) does not depend on the choice of v1,...,7, € T,P.

Let us check that vy (b) (91, . . ., 9,) does not depend on the choice of p € m1(b). Ifp’ € 7=1(b),
then p’ = g - p for some g € G. The independence follows from the invariance of v and the fact
that 7o 7, = 7 (for then dn(d7y(v)) = dn(v)).

It remains to check that 1y is smooth. Since the question is local we may assume that P = U x
G where U is an open subset of R", (n = dim P—dim G). Suppose 1, ..., 2, are coordinates on
U. Since v vanishes along the G-directions, it has to be of the form ) a;,...;, (z,y)dxi A. . . Adx;,
where y € G. Since v is G-invariant, the functions a;,...;,(x,y) do not depend on y. Therefore
v=> ai..i(x)dr; A... Ndz;, = vp. O

By the Proposition above in order to show that there exists a two-form wg on My with
T'wo = wlg-1(0) it is enough to check that L(&M)(w|¢_1(0)) = 0 for all £ € g (since w is G-

invariant to begin with). Now for any € ®~1(0), the tangent space T,,®~!(0) is the kernel of
d®, and for any v € ker d®,, we have by Lemma 127,

w(@) (@), v) = (D, (v),€) = (0,€) = 0.

Therefore w]q>71(0) is basic, i.e., w\¢71(0) = m*wq for a unique two-form wy on Mj.
Since 7* is injective, in order to show that wq is closed, it is enough to show that 7*wy is
closed. Now d(m*wp) = d(w|p-1(0)) = (dw)|e-1(0) = 0.
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It remains to prove that wy is non-degenerate. If (V,w) symplectic vector space and U
is a subspace with the property that U C U*“ then the quotient U%/U is naturally a sym-
plectic vector space. Therefore the form wp is nondegenerate iff for any € ®~1(0), we
have T,®1(0)*®) = T,(G - ). On the other hand by Corollary 128, part (2), we have
ker d®, = (T(G - x))*®). Hence T, (G - 2) = (Tw(G - 2))*®)*®) = ker d®, = T, ®1(0). This
finishes the proof of Theorem 124.

Suppose now we have an invariant Hamiltonian h € C°°(M)%. Then hlg-1(0) = m*ho for
some smooth function hg on M. We want to show that dn(X}) = Xj, om. It is enough to show
that ¢(dm(Xp))wo = dho. Now 7*dhg = dn*hg = dijh = ij(dh) where iy denotes the inclusion
®~1(0) — M. So it is enough to show that 7*(:(dm(Xp))wo) = i5(dh). Fix z € ®~1(0),
v € T,®71(0). Then

m ((dm(Xn))wo) () (v) = v(dm(Xn))wo(w())(dm(v))
= wo(m(x) (dﬂ'(Xh))vdW v)

This proves Theorem 126.

Homework Problem 21. Let (M,w) be a symplectic manifold. Recall that a submanifold
Z C M is coisotropic if for all z € Z,

(T.2)* CT.Z
where (T,2)% = {v e T,M |w(2)(v,w) =0, Yw € T, Z}. Show that the null distribution

N =112
z€Z
is integrable in the sense of Frobenius, i.e. if X,Y are two vector fields defined on an open
set U C Z and satisfying X (z),Y (2) € (I.2)“, for all z € U, then [X,Y](z) € (1,Z*, for all
zeU.
Hint: For any vector fields X, Xo, X3, dw(X1, X2, X3) = 0.

Homework Problem 22. Consider C = {z+iy|z,y € R}. Let dz = dz+idy, dz = dx—idy.
Show that w = %dz A dZ is a symplectic form preserved by the action of S' on C:
el .z =€ (complex multiplication)
Show that the action is Hamiltonian and that for any ¢ € R,
B(z) = |z +¢
is a moment map (after an identification of Lie(S')* with R).

Homework Problem 23. (a) Suppose we have Hamiltonian actions of a Lie group G on
symplectic manifolds (Mi,w;) and (Ma,ws). Suppose also &1 : M} — g%, $o : My — g*

are corresponding moment maps. Show that the action of G on M; x Ms, g - (m1,m2) def
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(g - m1,g - mg2) is Hamiltonian and that ®(mj, mg) = ®1(m1) + $2(m2) is a corresponding
moment map. (The symplectic form on M; x My is wi + wy).

(b) Consider C" = {(21,...,2n,)|2; € C} with a form w = %ZJ dzj A\ dZj. Show that w is
symplectic and that the action of S on C",

Stx " —C", (e (21,...,20)) — (€%21,...,€?2,)

is Hamiltonian.
Moreover, show ®(z) = Y |z]? = ||z||? is a moment map. Compute the manifolds ®~!(y)/S*
for regular values of ®.

Homework Problem 24. Let ® : M — g* be a moment map for an action of G on M.
Show that for all u € g*,

O (AdN (@) /G = 27N () /G,
as sets, where G, = {g € G| Ad'(g)p = p} is the isotropy group of p.

19. LECTURE 19. REDUCTION AT NONZERO VALUES OF THE MOMENT MAP

We continue to assume that all actions are proper and that all zero dimensional isotropy
groups are trivial.

The only property of zero that was used in the proof of Theorems 124 and 126 is that zero
is fixed by coadjoint action. Therefore we can restate them as follows.

Theorem 131. Let (M,w,® : M — g*, h) be a symmetric Hamiltonian system. Assume that
the action of G on M is proper and that any zero dimensional isotropy group is trivial. Let
1€ g* be a regular value of the moment map ®.

If u is fived by the coadjoint action then the action of G preserves ® (). For any z €
@~ (p) the isotropy group G is trivial. Hence M, := ®~(u)/G is a smooth manifold and the
orbit map 7, : @71 (p) — M, makes ®~1(p) into a principal G bundle over M,,.

Moreover, there exists a symplectic form w,, on M, such that (m,)*w, = w|e-1(,)-

Finally, let hy, be the unique function on M, such that (my)*h, = hle-1(,. Then the
Hamiltonian vector field Xy of h on M and the Hamiltonian vector field Xy, of h, on M,
are 7, -related:

dm, (Xp) = Xp, o7y

This begs the question of what to do when p € g* is not fixed by the coadjoint action. There
are two ways to proceed: the so called “point reduction” and the so called “orbital reduction.”
In the case of the former we observe that in general the level set ®~!(u) need not be preserved
by the action of the full group G. However, since the moment map is equivariant, it is preserved
by the action of the isotropy group G, of u. The reduction theorem can then be modified as
follows.

Theorem 132. Let (M,w,® : M — g*, h) be a symmetric Hamiltonian system. Assume that
the action of G on M is proper and that any zero dimensional isotropy group is trivial. Suppose
that p € g* is a reqular value of the moment map .
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Then the action of the isotropy group G, preserves ®~1(u). For any z € ®~1(u) the isotropy
group G is trivial. Hence M, := ®1(u)/G,, is a smooth manifold and the orbit map m, :
d~1(u) — M, makes @1 (p) into a principal G,, bundle over M,.

Moreover, there exists a symplectic form w,, on M), such that (m,)*w, = w|e-1(,)-

Finally, let h, be the unique function on M, such that (mu)*h, = hle-1(,). Then the
Hamiltonian vector field Xy of h on M and the Hamiltonian vector field Xy, of h, on M,
are m,-related:

dm(Xp) = Xp, o7y

We leave a direct proof of the above theorem as an exercise and now describe an alternative
approach. Observe that if a group G acts on the symplectic manifolds (Mj,w;) and (Ma, ws)
in a Hamiltonian manner with corresponding moment maps ®; : M; — g*, i = 1,2, then the
diagonal action of G on (M; X My, w + wa), g - (m1,ma) := (g - my1,g.mg) is also Hamilton-
ian. Moreover, ¥(my,mg) = ®1(m1) + P2(m2) is a corresponding moment map [check the
assertions.

Lemma 133. Consider a Hamiltonian action of a Lie group G on a symplectic manifold
(M,w) with a corresponding moment map ® : M — g*. Suppose p is a regular value of
the moment map.

Then 0 is a regular value of the moment map ¥ : M x O, — g* for the diagonal action of
G on the product of (M,w) with the coadjoint orbit O, through p, where O, means that we
consider the orbit with minus the standard symplectic form.

Conversely, if 0 is a regular value of ¥, then u is a regular value of ®.

Proof. Suppose ®(m) = f € g*. Since the moment map ® is equivariant, ®(G - m) =
AdN(G)®(m) = Ad'(G)f. It follows that the image of the differential d®,, : T,,M — g*
contains the tangent space at f to the orbit coadjoint Ad(G)f:

Tr(AdY(G) f) C Ay, (T M).

Next note that ¥=1(0) = {(m, f) € M x O, | ®(m) — f = 0}. Therefore for (m, f) € ¥=1(0)
we have dW¥ () (TnM x TfO,) = d®y, (T, M) + T; O, = dB, (T, M). 0

Note that we can define a G-equivariant diffeomorphism o : ®~1(O) — ¥=1(0) by o(m) =
(m, ®(m). Note also that ®~!(1) embeds into ®~1(0) and that a G-orbit in ®~1(0O) intersects
&~ !(u) in a G -orbit. Consequently ¥~1(0)/G ~ & 1(u)/G, as manifolds. In fact more is
true.

Lemma 134 (The shifting trick). Consider a proper Hamiltonian action of a Lie group G on
a symplectic manifold (M,w) with a corresponding moment map ® : M — g*. Suppose p is
a regular value of the moment map. Let O, denote the coadjoint orbit through p with minus
the standard symplectic structure. Let ¥ : M x O,  — g* be the moment map for the diagonal
action of G on M x O,;. Then

VTH0)/G = 27N (w)/G,,
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as symplectic manifolds.

Proof. Consider the map 7 : @~ (u) — ¥~1(0) < M x O~ given by 7(m) = (m, ®(m)). We
are done if we can show that 7*(w — wo) = w|g-1(,). But 7°wo = 0 since @ is constant on
&~ !(p), and 7w = w|gp-1(,,) by definition. O

The following theorem and its corollaries are very useful in computing the reduced spaces.

Theorem 135 (reduction in stages). Let (M,w) be a symplectic manifold with a proper Hamil-
tonian action of a product G X H. Let ® : M — g* x h*, ®(m) = (P1(m), P2(m)) € g* x b* be
a corresponding moment map. Suppose (o, 3) € g* X b* is a regular value of ®.

Then M, := ® '(a)/G, is a Hamiltonian H-space and P2|p-1(a) descends to a moment
map ¥V : M, — h* for the action of H on M,.

Moreover, B is a regular value of ¥ and

UN(8)/Hg ~ & e, ) /(G x H)q,p)

as symplectic manifolds.

Note that the hypothesis that the product G x H acts really amounts to saying that both
G and H act and that the actions of G and H commute.

Proof. Since G x H is a product, the coadjoint actions of G on h* and of H on g* are trivial.
Hence ® is H-invariant and ®, is G-invariant.

It follows that the action of H on M preserves the level set <I>1_1(a). Moreover, since it
commutes with the action of G, it descends to an action on M, := ®;'(a)/G4s. Also, the
projection 7, : <I>f1(a) — M, is H-equivariant. It follows that for any £ € h, we have
the following relation between the induced vector fields on M and on My: dma(Eas] (I)l—l(a)) =
&, 0Tq. Also, since @y is G-invariant, the restriction <I>2|<I);1(a) descends toamap ¥ : M, — h*,
which is H-equivariant.

To show that ¥ is a moment map for the action of H on M, we need to show that ¢(&ar, Jwa =
d(¥, ) where w, is the reduced symplectic form on M,. We know that dma (X (e, ¢)) = X ¢) ©
mo where X(g, ¢y and Xy ¢y denote the Hamiltonian vector fields of the appropriate functions.
Since X (g, ¢y = {m we have

Xewg) ©Ta = dTa(X(@,6) = dTa(§M) = &M, © Tar
Therefore Xy ¢y = &, . Thus the action of H on M, is Hamiltonian and ¥ : M, — bh* is a
corresponding moment map (we have already checked that ¥ is equivariant).

Next we argue that if (o, 3) is a regular value of ® then [ is a regular value of W. Note first
that by definition of ¥, we have U~1(8) = (®; () N ®,1(B))/Go = e, B)/Ga.

Thus to show that 3 is a regular value of W it is enough to show that for any x €
@ (a)N®, 1 (B) the level sets @, ' () and @, ' () intersect transversely at z. Since T,®;*(a) =
ker d(®), it follows from part (2) of Corollary 128 that the tangent space T, ®] " («) is the sym-
plectic perpendicular to the tangent space T, (G - x) to the G-orbit through z: Txcbl_l(a) =
(To(G - x))¥. A similar statement holds for the level set of ®3. Thus in order to prove that
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7,9 (a) + T,®,"'(8) = T, M, it is enough to prove that 0 = (T,®;'(a) + T,2;(8))" =

T.(G-z)NTy(H - z). Since (e, 3) is a regular value of @, it follows from part (1) of Corol-
lary 128 that T,((Gx H)-x) ~ gxbh ~ (T,(G-2)) x (T;(H -z)). Thus T,(G-x)NT,(H-z) = {0}.
This proves that § is a regular value of V.

Since ¥1(8) = ® (e, 8)/Gaq, the reduced spaces (My)g := ¥ 1(3)/Hg and M, 5 =

“Ha, B)/(Ga x Hg) are equal as manifolds. It remains to show that they are symplecticly the
same. Let m(, 5y : @ (o, ) — M(q ) and (m4)p : ¥1(8) — (Ma)s denote the orbit maps.
By definition, the reduced forms w € O*(Ma), wia,g) € Q*(M(ap) and (wa)s € Q*((Ma)g)
satisfy

(za)*wa: Wlgp-1()
(T(0,8)) " W(a,8) =w|o-1(a,B)
(m)ﬁ)*( ) =walw-1(8)

Therefore (7a)*((7a)5)" ((Wa)s) = (Ta)" (Walw-1(3)) = w|<1>;1(a)m<1>gl(ﬁ) = (T(a,8)) W(a,8)- Since
pull-backs by submersions are injective, it follows that w(, g) = (wa)s- O

Corollary 136. Let (M,w) be a symplectic manifold with a Hamiltonian action of a product
G x H (so that the actions of G and H on M commute). Let ® : M — g* x h*, &(m) =
(®1(m), Pa(m)) € g* X b* be a corresponding moment map. Suppose (a,3) € g* x h* is a
regular value of .

The the symplectic quotient obtained by first reducing M by the action of G at « and then
by the induced action of H at [ is isomorphic to the symplectic quotient obtained by by first
reducing M by the action of H at B and then by the induced action of G at «:

(Ma)p = (Mg)a-

Example 74. The standard action of the unitary group U(n ) on (C", £3" dzj Adz;) is Hamil-
tonian. It commutes with the action of S' given by e - z = ez, Wthh is also Hamiltonian. A
moment map for the action of S is ¥(z) = 1||z||?. Hence the reduced spaces for the action of
St are a point ¥~1(0)/S! and complex projective spaces CP" ! = {||z||? = c¢}/S! (if ¢ # 0).
It follows, in particular, that complex projective spaces are symplectic manifolds.

If K is a subgroup of U(n) then its action on C" is also Hamiltonian and it also commutes

with the action of St. Hence it descends to a Hamiltonian action on CP"~ 1.

20. LECTURE 20. RIGID BODY DYNAMICS

We now consider examples of symmetric Hamiltonian systems. We start with a free rigid
body in R? constrained to pivot freely about a fixed point, say 0. We can think of a body as n
particles with masses my, ..., m, and positions z1,...,z,, x; € R3. Since the body is rigid the
distances ||z; — ;|| and ||z;|| are constant. These conditions give us constraints. We claim that
the resulting configuration space is the Lie group SO(3) = {A € R¥ | AAT = I det A > 0}
of orthogonal orientation preserving matrices. Indeed let 2Y,... 20 be the positions of the
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particles at time 0, the reference configuration. Then at another time x; = Ax? for some
matrix A € SO(3).

To understand the dynamics, we need to determine the Lagrangian. Then using the Legendre
transform we will compute the corresponding Hamiltonian. Since the body is free and rigid,
there is no potential energy to worry about, it is all taken care of by the constraints. Thus
we need to compute the restriction of the kinetic energy of the system of free particles to
our constraint set. Let A(t) be a path in SO(3). Then z;(t) = A(t)z? and 2;(t) = A(t)a!
Consequently the kinetic energy of one particle is

1 2 1 i 0 4 0

Smillgil? = Smi(A(0)2, A(t)a?).
Therefore the kinetic energy of the whole body is KE(A, A) = > mi(Ax, AzY), where
A € T4 SO(3) is a tangent vector.

Note that T4 SO(3) = {X € R3* | XAT 4+ AX = 0}. This is because if A(t) is a curve in SO(3)
with A(0) = A then I = A(t)A(t)T. Therefore 0 = %}O(A(t)A(t)T) = A(0)A(0)T + A(0)A(0)7.

The quadratic form KE(A, X) := 13, m;(Xa?, Xa?) for X € T4 SO(3) defines a metric I
in SO(3):

= Zmi(Xx?,Ym?) for X, Y € T4 SO(3).

We claim that this metric is left invariant: (L%I)(B) = I(B) for all A, B € SO(3). To check
the claim we need to compute the differential of left multiplication dL 4. Let 'y( ) be a curve
in SO(3) with v(0) = A and §(0) = X. Then dLA(X) = &| La(y(t)) = &|,Av(t) = A v(0) =
AX. Therefore dLs(X) = AX.

We now compute: forany X,Y € T SO( ) we have (L’AH)(B)(X, Y)=1(LaB)(dLaX,dLAY) =

I(AB)(AX,AY) =", m,(AX:cO AY ) =Y, mi(Xa), Yad) = 1(B)(X,Y) since A € SO(3).

We conclude that if we have a I‘lgld body, which is free to rotate about a fixed point, then
the corresponding Hamiltonian system is 7% SO(3) with a Hamiltonian h € C°°(T* SO(3)) of
the form h(A,n) = 31*(A)(n, n) where I* is a metric on 7% SO(3) dual to a left-invariant metric
on SO(3).

Homework Problem 25. Suppose we have an action 7 : G — Diff(N) of a Lie group G on
a manifold N. Let 7 : G — Diff(T*N) be the lifted action. Let g be a metric on N such
that 77g = g, for all a € G, i.e., let g be a G-invariant metric. Let h(a,n) = 1g*(a)(n,n) b
the Hamiltonian defined by the dual metric g*. Then h is G-invariant, i.e. (75)*h = h, for all
a€G.

All left-invariant metrics on a Lie group GG are determined by their value on the tangent
space at the identity: if g is left-invariant, g(a)(v,w) = g(1)(dL4-1v,dL,-1w), where d(L,-1) :
T,G — T1G. In other words, left invariant metrics are classified by the inner products on the
Lie algebra g.
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In the case of SO(n), the special orthogonal group, the Lie algebra so(n) = {X € R | X +
XT = 0}. There is a standard inner product on so(n):

1
(XY ) = —5trXY.

Clearly it is symmetric. To check positivity we compute: (X, X)s = —3trX? = —1 3, > XigXji =
520> XijXij (since X = —=XT). So (X, X)g = 5> X5 > 0.

Note that this standard inner product is invariant under the adjoint action. Indeed Ad(A)X =
AX A and (Ad(A)X, Ad(A)Y )standard = —5trAXATTAY A7 = 21XV ATTA = —1trXY =
(X, Y)standard- So the action of SO(n) on so(n) is orthogonal.

With the standard inner product, the matrices

0 10 0 01\ /0 0 0
-1 00],l0 o0o0],[0 0 1
0o 00/ \-1 00/ \o -10

form an orthonormal basis of s0(3). This choice of a basis identifies (s0(3),(+,-)st) with
(R3,(-,-)). Under the identification, the adjoint action becomes the standard action of SO(3)
on R3. Explicitly the identification is given by

0 —Wws3 w9
ws 0 —w1 — (wl, wa, 'wg)
—wy Wi 0
Note that
0 —w3  Wwo T
w3 0 —w1 Ty | = N
—wo Wi 0 T3

Lemma 137. Let G be a Lie group. Let o be a left-invariant metric on G. Then for b € G
we have (Ry-1)*0 = o if and only if (Ad(b))*c(1) = o(1). Here Ry-1g := gb~'.

Proof. The proof is a computation. By definition ((R;_,0)(g)(v,w) = o(Ry-19)(dRy-1v,dRy-1w).
The metric ¢ is left invariant if and only if o(g)(v,w) = o(1)(dL,-1v,dL,1w) for all g € G.
Hence ((Rz,la)(g)(v, w) = O’(l)(dL(gb—1)—1de—1v, dL(gb—l)—lde—lw). Now dL(gb—l)—lde—l =
d(Lpg-1Ry-1) = d(LyLg-1Ry-1) = d(LyRy-1Ly-1) = dLy Ry-1dLy-1. Therefore ((Ry-1)*0)(g)(v,w) =
o(1)(Ad(b)dL -1, Ad(b)dL _1w). So if Ad(b)*(c(1)) = o(1), we get ((R;-10)(g9)(v,w) =
o(1)(DLy-1v, DLy1w) = o(g)(v,w).
Conversely, if (Rb 1)*0 = o, then

o(1)(Ad(b)dLy-1v, Ad(b)dL,1w) = o(1)(dLg-1v,dLgs-1w)
for all g, for all v,w € T;G. So o(1)(Ad(b)-, Ad(b):) = o(1)(+,) or (Ad(b))*o(1) = o(1). O

It follows that if g is a left-invariant metric on SO(3) and the inner product g(1) on 77 SO(3)
is preserved by the adjoint action of a subgroup K of SO(3), then the Hamiltonian system
(T*SO(3), h(q,p) = 39*(q)(p,p)) has SO(3) x K as a symmetry group.
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Let us now take a close look at the inner products on s0(3). Let I be such an inner product.
The map J : s0(3) — s0(3) defined by (X,JY )y = I(X,Y) is uniquely determined by the inner
product I. It is symmetric with respect to (-, )st: (X,TY)st = (JX,Y ). Therefore J has an
orthonormal basis of eigenvectors with positive eigenvalues Iy, I and I3. These eigenvalues
are called moments of inertia of a rigid body.

Exercise 12. Ad(A)*I =1 if and only if JAd(A) = Ad(A)7J.

Therefore, if all moments of inertia are equal, the inner product I is SO(3)-invariant. Hence
the corresponding Hamiltonian system on 7% SO(3) has SO(3) x SO(3) as a symmetry group.
If only two moments of inertia are equal, then the inner product is invariant under the action
of SO(2). Therefore the corresponding Hamiltonian system on 7% SO(3) has SO(3) x SO(2) as
a symmetry group.

Let us now suppose that there is gravity. Such a system is called a heavy top. The Lagrangian
(hence the Hamiltonian) then has a potential term. Let us compute it. Let e3 denote the unit
vertical vector. Let m = > m;. Let 2° = % > m;z?; it is the center of mass of the rigid body.
Generically the center of mass is not at the origin. This is going to be our blanket assumption.
The potential V(A) = Y gm;(Az?,e3) = mg(A(z%"gC?),eg) = mg(Ax°, e3), where g denotes
the gravitational acceleration 9.8 m/s? (and not a metric!). The corresponding Hamiltonian is
then of the form h(A,pa) = 31*(A)(pa,pa) + V(A) where ps € T% SO(3), I* is the metric on
T*S0(3) dual to a left invariant metric I on SO(3) and the potential V' (A) is as above.

Let us now examine the symmetries of a heavy top. We know that the metric I is invariant
under the left multiplication by SO(3). What about the potential? For B € SO(3) we have
V(BA) = mg(BAx°, e3) = mg(Ax, B~le3). Thus the isotropy group H of e3:

x *x 0
H={BeSO@3)|Bez=es}={|* = 0|}
0 01

preserves the potential V. The group H is (isomorphic to) SO(2).

Let K = {B € SO(3)| Bz = 2°}. The group K is also isomorphic to SO(2). For any
B € K we have V(AB) = mg(ABx, e3) = mg(Ax°, e3). So potential energy is also right-SO(2)
invariant as well. Thus generically the potential has SO(2) x SO(2) worth of symmetries.

We now consider several cases. If all moments of inertia are equal, then the kinetic energy
is left and right SO(3) invariant. Hence the symmetries of the Lagrangian are exactly the
symmetries of the potential V. Therefore the system has SO(2) x SO(2) worth of symmetries.

Suppose now that only two moments of inertia are equal. Then the metric on SO(3) is
invariant under the group SO(3) x L, where L is isomorphic to SO(2). Recall that the first
factor acts by left multiplication and the second by right multiplication. If the group L also
fixes the center of mass x°, then the whole system has SO(2) x L = SO(2) x SO(2) worth of
symmetries. This kind of heavy top is known as the Lagrange top.

Finally, if all moments of inertia are different, the system only has SO(2) as a connected
symmetry group (there may also be some discrete symmetries).
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21. LECTURE 21. RELATIVE EQUILIBRIA

Suppose we want to understand a dynamical system, which for the purposes of the present
discussion we can think of as the flow {¢;} of a vector field X on a manifold M. We would
then start by trying to find two types of orbits of the flow:

1. look for fixed points of the flow ¢y, i.e., look for points m € M such that ¢;(m) = m
for all t;

2. look for periodic orbits of the flow ¢y, i.e., look for m € M such that pr(m) = m for
some 7" > 0 (so that ¢ri¢(m) = (m) for all ¢).

Note that m is a fixed point of the flow if and only if X (m) = 0 (so fixed points are zero of the
vector field X). Having found fixed points and periodic orbits, we would then study the flow
in the neighborhood of fixed points and of periodic orbits.

Suppose now we have a symmetric Hamiltonian system (M, w, G, ® : M — g*, h € C>®°(M)%),
where M is a manifold, w is a symplectic form on M, G is a Lie group acting on M in
a Hamiltonian manner, ® : M — g* is a corresponding moment map and h € C°°(M)%
is a G-invariant Hamiltonian on M. If (M,,w,, h,) is a reduced Hamiltonian system, then
dim M, = dim®~!(y) — dim(G,) = dim M — dim G — dim G, (because y is a regular value).
Therefore the reduced system should be easier to understand than the original system on M.

Suppose a point m € M, is a zero of of the Hamiltonian vector field X, of h,. If m €
®~1(p) is a point such that w(m) = m (where 7 : ®~*(u) — M, is the orbit map), then
dr(Xp(m)) = Xp,(m) = 0 since the Hamiltonian vector fields of h and of h, are m-related.
Consequently the vector X} (m) is tangent to the orbit G, -m. In other words, X3 (m) = {u(m)
for some vector £ in the isotropy Lie algebra g,,.

We claim that then ¢;(m) = (exptf) - m for all ¢, where {(;} denotes the flow of the
Hamiltonian vector field X}, of h. Indeed since the Hamiltonian A is G-invariant, its Hamiltonian
vector field is G-invariant as well, so the flow ¢; is G-equivariant. Consequently dy;(Ear(m)) =
Eri(pe(m)). On the other hand, dypi(Xn(m)) = Xp,(¢i(m)) by definition, since ¢y is the flow of
Xp,. Since dy; is injective,

(24) Ear(pr(m)) = Xn(@i(m)).

By equation (24), the curve ¢t — ¢;(m) is an integral curve of the induced vector field ;.
Since t — (expt£) - m is also an integral curve of £y, it follows that

¢t(m) = (exptg) - m,
which proves the claim.
Definition 138. Let (M,w) be a symplectic manifold with a symplectic action of a Lie group

G. A point m € M is a relative equilibrium of an invariant Hamiltonian h € C*(M)Y if
the vector X} (m) is tangent to the G, orbit of m, where G, is the isotropy group of p = ®(m).

Thus if (M,w,G,® : M — g*,h € C>°(M)%) is a symmetric Hamiltonian system, a point
m € M is a relative equilibrium if and only if any one of the following conditions holds.
1. Xp(m) = &y (m) for some € € g.
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2. d((®,&) — h))(m) = 0 for some & € g.

3. m € M, is an equilibrium of the reduced Hamiltonian system (M,,w,,h,) where m is
the image of m under the projection m: ®~1(u) — M, and u = ®(m).

4. t+— (expt) - m is an integral curve of X,.

5. Xp(m) € Tr(G - m).

Rigid body rotating freely about a fixed point. Recall that the phase space for a rigid
body rotating freely about a fixed point is M = T SO(3) with the standard symplectic struc-
ture. The motion is governed by a Hamiltonian of the form h(q,p) = %\\dLgp\|2, p € T;SO(3),
where || || is an inner product on the Lie algebra so(3)* ~ R3. The symmetry group is
G = SO(3), and the action of G on M is the lift of left multiplication. Recall, that left
multiplication induces right invariant vector fields: for every ¢ € so0(3) the corresponding
vector field is given by £so(3)(q) = %‘ ol(expt€)q) = dRy(§). Consequently the moment map

© : T*SO(3) — s0(3)" is determined by (®(q,p),€) = (p, &s0(3) (@) = (p, dRy(§)) = (R, €).
Hence ®(q,p) = dRqu. Note that the restriction of the moment map to each fiber of the cotan-
gent bundle ® : T SO(3) — s0(3)* is an isomorphism, so all values of ® are regular. Note
also that SO(3) acts freely on itself, hence on T SO(3).

Let us compute the reduced system at p € s0(3)*. We have ®~!(u) = {(¢,p) : dRIp = p} =
{(q, (dRY)™*p) : ¢ € SO(3)} ~ SO(3). The reduced space ®~!(u)/G,, is diffeomorphic to the
coadjoint orbit Ad'(G)u: the diffeomorphism is given by

(25) (g, AR} 1p)] — Ad' (g~ ).

Note that this argument works for any Lie group G and not just for SO(3). Note also that we
haven’t computed the reduced symplectic form. What is it? Hint: reduction in stages — the
left and right multiplications commute.

To compute the reduced Hamiltonian we need to compute the restriction h‘ B—1()" If

(a.p) € @ '(u) then h(q,p) = glldLypl* = 3lldLg(dRI\)"'ul* = Flld(LeRy)"ull* =
$1AdT (g7 )p||?. Hence under the identification (25) of the reduced space with the coadjoint
orbit, hy, : Ad'(G)p — R is simply h,(n) = 3|n]|*.

Recall that the coadjoint orbits of SO(3) are two-spheres and the origin. Recall also that
there exists an identification of so(3)* with R3 such that under this identification ||n||? =
Imf + Ign% + 1377% where Iy, I, I3 are moments of inertia.

Thus to understand the reduced dynamics of a free rigid body it is enough to understand
a Hamiltonian system on S? = {n € R® | n? + 73 + n} = ¢} with a Hamiltonian of the form
hu(n) = 3(Iin} + L3 + Isn3), I; > 0. We know that the flow of the Hamiltonian vector field
Xh,, preserves hy,. Thus to understand the dynamics it is enough to understand level sets of h,,
which are the intersections of a sphere with ellipsoids. In particular, if all moments of inertia
are different, we get six equilibria corresponding to the intersections of the axes of the ellipse
with the sphere. Two equilibria are the maximal points of h,, two are the minimal points and
two are the saddle points.
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Definition 139. Let ¢, : M — M be a flow on a manifold M. Suppose a point mg € M a
fixed point: ¢(mg) = mofor all t. The point mg is Liapunov stable if for any neighborhood
U of my, there exists a neighborhood V of mg, V C U, such that for allm € V we have
varphiy(m) € U for all t.

Lemma 140. Suppose p; : M — M is a flow on a manifold M. Suppose there exists a
smooth function f defined on M mear mgy such that

L f(pi(m)) = f(m),
2. dfm, =0,
3. The quadratic form d?f,,, is positive definite.

Then my is Liapunov stable.

Proof. Since the claim is local, there is no loss of generality in assuming that M = R" and that
mo = 0. By Morse lemma there exist coordinateszy, ...,z such that f(xz) = f(0) + Y a;jz?
where a;; = %(0). Since the Hessian d?f(0) = (a;;) is positive definite by assumption, it
follows that the level sets of f near f(0) are compact. Since f is constant along the flow, the
stability follows. O

It follows from the lemma above that maxima and minima of h, are stable. It is also easy
to see that the saddle points corresponding to the intermediate axis are unstable.

We will see later that in good cases stability of an equilibrium in the reduced space implies
relative stability of a corresponding relative equilibrium in the original system, where relative
stability is defined as follows:

Definition 141. Let M be a manifold with an action of a Lie group G, and let ¢y : M — M
be a G-equivariant flow on M. Then ¢; descends to a flow ¢; on the quotient M/G. A relative
equilibrium)j of ¢; is a = such that the curve x — ¢;(x) projects down to a constant curve
in M/G. A relative equilibrium ¢ — ¢;(x) is G-stable if for every G-invariant neighborhood
V in M of the relative equilibrium, there exists a G-invariant neighborhood U such that for
every y € V we have p;(y) € U for all .

Spherical pendulum. A spherical pendulum is a Hamiltonian system on the cotangent bun-
dle of the two-sphere T*S? where T*S? is given the standard symplectic form. Recall that
the standard metric on R3 allows us to embed 752 symplecticly into T*R3: T*S? ~ T'S? —
TR3 ~ T*R3. Hence

T*5% = {(z,y) e R* x B[ |[«|* = L,z -y = O}.
With this identification the Hamiltonian h is given by
1
h(z,y) = §||y||2 + 3,

where x3 is the third coordinate of € R3 (we have assumed that all relevant physical constants,
such as mass, length of the pendulum and gravitational acceleration, are equal to 1).
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The group S' acts on S? be rotations about the z3 axis, preserving the metric and the
potential V(x) = x3. This lifts to an action on T*S? preserving the Hamiltonian h.

Let us start the study of the spherical pendulum by looking for equilibria of the Hamiltonian
flow of h on T*S?. Let us first consider a more general situation: a classical mechanical
system on a manifold B (cf. Definition 61. That is suppose (B, g) is a Riemannian manifold.
Let M = T*B be the cotangent bundle of B with the standard symplectic form and let
h(q,p) = 19*(¢)(p,p) + V(q) be a Hamiltonian where p € Ty B, the potential V is a smooth
function on B and ¢* is the dual metric on 7*B. To find equilibria of the Hamiltonian system
(T*B,w = wr+«p, h) we need to find the zeros of the Hamiltonian vector field X}, of h. Since the
symplectic form is nondegenerate, Xy (g, p) = 0 if and only if dh(q,p) = 0. Now if (¢,p) € T*B
is a critical point of h, it is a critical point of the restriction of h to the fiber 7;7B. But the
restriction h]T;B is the quadratic form %g*(q)(-, -) plus the constant V' (q). So if (¢,p) € T*B
is a critical point of h, then p must be zero. And conversely, the points of the zero section are
critical for the kinetic part of the Hamiltonian : (¢,p) — %g* (¢)(p,p). Therefore the critical
points of h are the points of the form (g, 0) where dV (¢) = 0. In the case of spherical pendulum
V(x) = x3: 8% — R. It follows that the critical points of V are north and south pole (0,0, 1)
and (0,0, —1) respectively. We conclude that the spherical pendulum Hamiltonian has exactly
two equilibria corresponding to the pendulum hanging straight down and the pendulum being
straight up. It is not hard to check using Lemma 140 that the straight down position is
stable. The straight up position is unstable (see if you can produce a trajectory that leaves
any sufficiently small neighborhood of the north pole in 7%5?).

Note that the two equilibria are fixed points of the S' action on 7*S2. In fact they are the
only fixed points. Indeed if a group G acts on a manifold B and by a lifted action on T*B,
then (q,p) € T*B is fixed by the action of G only if ¢ € B is fixed. If ¢ is fixed by G, then
the lifted action of G sends the fiber T}’ B to itself. In fact we get a representation of G on the
vector space Ty B. Thus a lifted action of G on T™B has fixed points only if the action of G
on B has fixed points and the corresponding representation of G on the fibers above the fixed
points in B has fixed vectors. In the case of S acting on S? by rotations about the z3 axis,
the (co)tangent spaces at the north and south poles are planes perpendicular to the vertical
axis, and S! acts on these planes by rotations. It follows that the north and south pole are the
only fixed points.

By Corollary 128 the north and south poles are the only critical points of the moment
map J for the lifted action of S* on S2. We can check this by computing the moment map
J : T*S? — Lie(S1)* ~ R explicitly (we identify the dual of the Lie algebra with R by choosing
a basis of the Lie algebra of S!, say %). Recall that we identified 7*S? with a subset of R3 x R3.
Since the action is a lifted action, J(z,y) = (y,&(x)) = y-&(x) where £ is the vector field induced
by the action of S* on S2. Now &(z) = —xga%l + xlaim. Hence J(z,y) = —xoy1 + x1y2. One
can check that the points (0,0,41,0,0,0) € {(x,y) € R* x R*|||lz||> = 1,2 -y = 0} are indeed
the critical points of J.

Let us compute the reduced spaces at regular values of J. Note that J(0,0,+1,0,0,0) = 0,
so zero is the only singular value of J. Therefore we should be able to carry out reduction at
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any ¢ # 0. Since (0,0,41) ¢ J~!(c) for ¢ # 0 we may use cylindrical coordinates (without

losing any points):
x1=1+1—22cosb,

T9 =11 — 22sin0,

T3 =2z

The action of S' in these coordinates is given by €™ - (2,6) = (2,7 + ). Hence the induced
vector field £(6, z) is %. The canonical symplectic form w is dz A dp, + df A dpg where p,, pg
denote the coordinates on the cotangent bundle corresponding to (z,6). The moment map in
these coordinates becomes J (0, z, pg, p.) = (ppdf + p.dz, %} = py. Consequently the level set
of the moment map J~!(c) = {(6, z,¢,p.)}. Hence the reduced space (T*S?). = J !(c)/S* ~
{(z,p.)} = T*(—1,1). Note that J~!(c) = St x T*(—1,1).

What is the reduced form w.? We have W‘Jfl(c) = dz ANdp,. Therefore w. = dz A dp,, which
is the standard symplectic form on 7%(—1,1). We conclude that

(J_l(c)/slawc) = (T*(*la 1)7 dz A dpz)'

Let us now compute the reduced Hamiltonian h.(z,p,). The metric g in cylindrical coordi-

nates is (dr1)? + (dz2)? + (dvs)? = [d(V1 — 22 cos 0))2 + [d(V/1 — 22 sin 0)]? + dz? = % +(1-

z%)d6?. Hence g*(2,0)((p=;po), (=, 9)) = (1=5zp§ + (1 — 2?)p?) and the full Hamiltonian is give

2
by h(6, z, pe, p:) = %(1_—122p§+(1—z2)p§)+z. Consequently h‘J—l(c) = %(1—22)])24—(@%—2).
We conclude that the reduced Hamiltonian h, is given by

1 2y, 2 g
he(z,p2) = 5(1 —2%)p; + (m

Note that h. is again of the form kinetic 4+ potential where the potential term is Veg(z) =
2

m + z. It is called the effective potential.
It follows from the discussion above that the critical points of the reduced Hamiltonian A,
are points of the form (z,p,) where z is a critical point of the effective potential. Now
A -2z 1= 2z + (1 — 22)?
2 (1—22)2

w(2) = —Em
It follows that for all ¢ # 0, there exists a unique critical point zeqt of Ve’ﬁ. Note that —1 <
Zait < 0. Hence for all ¢ # 0, we have relative equilibria which, when projected to S? from
T*S? are S' orbits, which are horizontal circles.
Since the reduced spaces are two dimensional and since the Hamiltonian itself is a constant
of motion, the trajectories of the reduced systems lie on the level curves of the reduced Hamil-

tonians. If h.(z,p.) = const then p? = W. This is a simple closed curve in the z-p,

plane. Since J~!(c) = St x T*(—1,1), it follows that (h,J) !(const,c) is a 2-torus. We will
see that the reason for the motion of the spherical pendulum to be confined to tori and circles
is the fact that the spherical pendulum is a completely integrable system.

+ 2).
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It remains to analyze the motion on the level set J~1(0). We leave it as an exercise. Hint:
delete the north and south pole. The action of S! is free on the remaining set.

22. LECTURE 22. LAGRANGE TOP

Recall from Lecture 20 that a Lagrange top is a classical Hamiltonian system on 7™ SO(3)
with the standard symplectic form w and with a Hamiltonian of the form (A, p4) = %JI* (pa,pa)+
mg(Az®, e3) where 20 is a vector in R3, e3 is the unit vector along the vertical axis, m and g
are constants, and I* is a left invariant metric on 7% SO(3) which is also preserved by the right
action of K = {B € SO(3) | Bz® = 2°}. Without loss of generality we may assume that 2° = e3
and that mg = 1. Thus the system (7" SO(3),w, h) has SO(2) x SO(2) worth of symmetries
(cf. discussion at the end of Lecture 20).

Our strategy is to reduce by one of the two SO(2) and then study the resulting system with a
remaining SO(2) symmetry. Note that the action SO(2) on SO(3) is free and that the quotient
space is S2. In other words, SO(2) — SO(3) — S? is a principal SO(2) = S! bundle. For this
reason we wish to study the reductions of a cotangent bundle of principal S'-bundle.

Connections and curvature for principal S'-bundles.

Definition 142. Let S! — P . B be a principal S'-bundle. Let & denote the induced
vector field: £(p) = 4 ‘0(629 -p). A connection 1-form A on P is an Sl-invariant 1-form such
that A(¢) = 1.

It is not hard to show that connection 1-forms always exist. For example a connection 1-form
A can be constructed out of an S'-invariant metric g:

__9)(&p(p),v)
(26) AP = 20 (), er )

for all v € T, P.
In turn, an S' invariant metric § on a principal bundle P can be manufactured out of an
arbitrary metric g on P by averaging:

1

9(p)(v,w) = 5

2
| ey @) was
0
where (e)* denotes, by abuse of notation, the pull-back by the diffeomorphism of P defined
by e € St.
Proposition 143. Let A be a connection 1-form on a principal S* bundle 7 : P — B. The

two-form dA is basic.

Proof. Since A is S'-invariant, dA is also invariant. Moreover, since A is S' invariant, the Lie
derivative of A with respect to the induced vector field £ is zero. But LeA = du(§)A + o(§)dA
and ¢(§)A = 1. Hence ¢(§)dA = 0. Therefore dA is basic by Proposition 130. O
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Definition 144. Let A be a connection 1-form on a principal S! bundle 7 : P — B. The
unique two-form F on B such that 7*F = dA is called the curvature two-form of the connec-
tion A.

Lemma 145 (Special case of “cotangent bundle reduction theorem” of Abraham and Marsden, Kummer).
Let S* — P = B be a principal S*-bundle. Let ® : T*P — R denote the moment map
for the lifted action of S* on T*P. Then all points in R are reqular values of ®. Moreover, a
choice of a connection 1-form A on P allows one to identify the reduced space ®~1(\)/S! at
1 with the cotangent bundle T*B of the base. Under this identification, the reduced form wy

satisfies wy = wr«p + A F where g : T*B — B is the projection and F' is the curvature of
A.

Proof. Since the action of S* on T*P is a lifted action the moment map ® is given by ®(p, eta) =
(n,&(p)) for n € Ty P. Tt follows that ®~'(\) = {(p,n) € T*P|{n,&(p)) = A}.

We claim that (1) all level sets ®1()\) are Sl-equivariantly diffeomorphic to the zero level
set ®71(0) and (2) that the zero level set is diffeomorphic to the pull-back of the vector bundle
7w : T*B — B along the projection map m : P — B (see equation 27).

Indeed the map sx(p,n) = (p,n + AA(p)) sends ®~1(0) to ®~L(\) : ®(p,n + NA) = (n +
MA(p), £(p)) = (n,€(p)) + AA(p)(£(p)) =0+ A - 1. The map sy is an S'-equivariant diffeomor-
phism of ®~1(0) and ®~1()\).

To prove the second claim note first that T*P N ®~1(0) = {n € TP, (n,&(p)) = 0}, ie.,
it is the annihilator of the kernel of the projection dm, : T,P — Ty )B. It follows that the
transpose (ClT['p)T : T;‘(p)B — T, P, which is injective, is an isomorphism between 7’ :(p)B and
TyP N & 1(0). Define w, : T;PN®1(0) — T, B to be ((dmp)T)~L. This gives us a map
w : ®1(0) — T*B making the diagram

B

commute. Consequently the quotient ®~'(0)/S' is diffeomorphic to T*B. Since map sy :
®=10) — ®71()\) is a Sl-equivariant, it descends to a diffeomorphism 5y : ®~1(0)/S! —
®~1()\)/S'. Composing the 5 with the diffeomorphism 7" B ~ ®~1(0)/S*, we get the desired
identification of the reduced space at A with the cotangent bundle of the base.

It remains to compute the reduced symplectic form w). Let ap denote the tautological
1-form on T* P, and let ap denote the tautological 1-form on T*B. We claim that

syap = w ap + ArpA.



SYMPLECTIC GEOMETRY AND HAMILTONIAN SYSTEMS 89

To prove the claim we compute in coordinates. Let U C B be a sufficiently small open set
so that 7—1(U) is diffeomorphic to U x S! and so that U has coordinates (qi,...,q,). Let
(@1, -+, Gn, 0,11, .,Mn,M9) be the corresponding coordinates on T* (7~ 1(U)) ~ T*U x T*S?.

In these coordinates the induced vector field £ = %. Since A() = 1, the connection one-
form A has to be of the form A = " a;dg; + df where a;(q,0) € C®(U x S1) are S!'-invariant
functions (since A is S! invariant). Therefore a;(q,0) = a;(q), i.e., a;’s do not depend on 6.

In coordinates (q1,-..,qn,0,M1,-..,Mn,Np) the moment map is given by

(I)((h?' "aqnaevnl""anTL’n@) ="ng-

Therefore ®1(0) = {(q1,---,@n, 0,71, -1, 0)}. Since sx(3_midg;) = > midg; + \(>_ a;dg; +
df), it follows that in coordinates the map s is given by the formula:

SA(Q17"'7QN797771)'"7””70) = (ql""ﬂqnaeanl+Aa17"'7nn+)\anuA)‘
Since ap = Y n;dq; + nepdy,
s\ap = Z(m + Xa;)dg; + AdO = Zmdqz' +A (Z a;dg; + do) .

—_——
ap A

Since wp = dap and wp = dag,
s\wp = w'wp — ArpdA
= w'wp — AMrpr*F by definition of F’
= w'wp — AMw'ngF since the diagram (27) commutes
=w'(wp + A\mpF).

We conclude that the reduced form wy under the identification of ®~1(\)/S! with T*B is
wy =wp + ArpF. O

We now consider a classical Hamiltonian system on the cotangent bundle of the principal
bundle P which is S! invariant and compute the corresponding reduced Hamiltonian systems.
Let g be an S! invariant metric on the principal S* bundle 7 : P — B. Let V be a smooth
Slinvariant function on P. Since B = P/S!, there exists a smooth function Vg on B with
V = 7*Vp. The corresponding classical Hamiltonian h is of the form

(o) = 36" (P)(nm) + (Vi) (p)

where ¢g* is the dual metric on T P.
Since the metric g is S1 invariant, it defines by equation (26) a connection one-form A on P .
Unwinding the definitions we discover that g*(p)(A(p), (dm)Tv) = 0 for all covectors v € T: B

Since ®~1(0) N TP = (dﬂ)T(T:(p)B), we see that g*(p)(n, A(p)) = 0 for all (p,n) € ®~1(0).
Therefore

(55)(p.m) = 59" () (0 + AA(),n + AA()) + 7V (p)
)\2

= S0 D) + 50 (D)AR), A)) + 7 V(o).
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Since %g*(p)(A(p), A(p)) is S*-invariant, the function %g*(p)(A(p), A(p))+7*Vg(p) is a pull-
back of a smooth function Vg on B. Since the metric g is S'-invariant and since dm, :
(R¢(p))? — Tr(p)B is an isomorphism, g defines a metric gg on B making dm, : (RE(p))? —
Tr(p)B an isometry.

We conclude that under the identification of the reduced space at A with T*B induced by
sy the reduced Hamiltonian h) is given by

ab,1) = 595(0)(0.7) + Ver )

for all n € Ty B.

We are now in position to apply our computations to the Lagrange top. Let us reduce by the
right action of S1. Since the metric T on SO(3) is left SO(3)-invariant, the reduced metric g on
5% = 80(3)/S! is also SO(3)-invariant. It follows that the kinetic energy term of the reduced
Hamiltonian is (up to a constant multiple) determined by the standard round metric on S2.
Since the connection A is SO(3)-invariant (since A is defined by an SO(3)-invariant metric),
the curvature F' of A is also an SO(3) invariant two-form. Hence, up to a constant multiple,
F is the standard area 2-form. Also, since A is SO(3) invariant, the function on S? defined by
’\72 g*(p)(A(p), A(p)) is SO(3)-invariant, hence is constant. It is no loss of generality to assume
that it is zero (since constant terms do not affect the Hamiltonian vector field).

We conclude that the reduced Hamiltonian hy on 7*S? is given by

maa,p) = 30°(0) () + s

where g is the round metric on S2. Note that this is exactly the Hamiltonian of the spherical
pendulum. The symplectic form on T*S?, however, is the sum of the standard symplectic form
and of the pull-back of a multiple of an area form on S2.

23. LECTURE 23. EXTREMAL EQUILIBRIA AND STABILITY

In this section we apply a stability result of James Montaldi [Persistence and stability of
relative equilibria, Nonlinearity 10 (1997), no. 2, 449-466] to show that a Lagrange top spinning
in a upright position is stable, provided the spin is sufficiently large.

We will need the following topological result on group actions that we won’t have time to
prove.

Proposition 146. Suppose a compact Lie group G acts on a (Hausdorff, second countable)
manifold M. The the quotient space M /G is Hausdorff and locally compact.

The next few paragraphs set up notation. Consider now a symmetric Hamiltonian system
(M,w,G,® : M — g*,h € C®°(M)%). The flow 1y of the Hamiltonian vector field of h is
G-equivariant. Therefore it descends to a flow v, on the quotient M/G.

Notation 2. For a point m € M the orbit G - m is a point in M/G. We denote it by m.
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Note that a point m € M is a relative equilibrium (of our symmetric Hamiltonian system)
if and only if m is fixed by ;.

Definition 147. A relative equilibrium m € M of a symmetric Hamiltonian system is G-
stable if for any neighborhood U of m in M/G there is a neighborhood V' of m such that
(V) C U for all t, i.e., the point m is Liapunov stable in M/G.

Since the moment map is G-equivariant, it descends to a map ® : M/G — g*/G. Note that
the level sets of ® are the quotients of the form ®~ (G - u)/G, u € g*, that is, they are the
reduced spaces.

Since the Hamiltonian h is G-invariant, it descends to a map h : M/G — R. Observe
that the restriction of h to ®~1(G - i) is the reduced Hamiltonian h, on the reduced space
M, = ® 4G - p)/G. Note that we view the reduced spaces M,, simply as topological spaces.

Definition 148. A relative equilibrium m € M is extremal if m € M/G is a local extremum
for the reduced Hamiltonian h,, on the reduced space M,, = ®~1(u), where u = ®(mn).

Theorem 149 (Montaldi). Let (M,w,G,® : M — g*,h € C®°(M)%) be a symmetric Hamil-
tonian system. If a point m € M is an extremal relative equilibrium than it is G-stable.

The proof of the theorem relies on the following topological lemma. Recall that a precompact
set is a set with a compact closure and that a precompact neighborhood is open.

Lemma 150. Let f : X — Y be a continuous map between two topological spaces with X
locally compact and Y Hausdorff. Suppose a point y € Y is such that S := f~'(y) is compact.
Then for any precompact neighborhood U of S there exists a neighborhood V' of y such that
f~YV) and the boundary OU are disjoint.

Proof. First note that since X is locally compact, the set S does indeed have a precompact
neighborhood: each point of S has a precompact neighborhood, so extracting a finite subcover
we obtain the desired precompact neighborhood of S. Let {V,,} be the collection of all closed
neighborhoods of y € Y (so that NgVs = {y} since Y is Hausdorff). Let Zg = f~1(Vj); the sets
Zg are closed. Then NgZg = S, and since SNOU = B, we have OU C X \NgZg = Ug(X \ Zg).
Since OU is compact there is a finite subcover {X \ Zg }7_; of OU. Then

V = int(Vg)

-

i=1

is a neighborhood of y with the desired property (here int(Vjp,) denotes the interior of Vg,). O

Proof of Theorem 149. Tt is no loss of generality to assume that m is a local maximum for
h|§>*1(u) where y = ®(m). Let X be a small enough neighborhood of m in M/G such that

h(in) is the maximal value of h on X N®~!(u). Let Y = g*/G xR, and let f : X — Y be given
by f(z) = (®(x), h(z)). Then for y = (u, h(m) the set f~1(y) is one point {m}, hence compact.
Let U be a precompact neighborhood of f~!(y). By Lemma 150 there is a neighborhood V/

of y in Y such that f~1(V) N OU = (). Then since the fibers of f are preserved by the flow
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1, and since the flow preserves connected components, the set f “L(V)NU is a flow-invariant
neighborhood of m as required. (Recall that ¢, denotes the flow on M /G induced by the flow
of the Hamiltonian vector field of h on M. O

We now apply Theorem 149 to the Lagrange top. Recall from Lecture 22 that after one
reduction we can think of Lagrange top as a family of Hamiltonian systems (T*S52, wy, hy) where
hx(q,p) = %g* (q)(p, p) + g3 is the spherical pendulum Hamiltonian (¢g* is the dual of the round
metric on S?) and w) is the sum the standard symplectic form and of the pull-back of a multiple
of an area form on S?: wy = wy«g2 + A\v, where v = (q1dga A dgs + qadqz A dgr + qzdqr A dgo)| 2.
We would like to understand stability of the North pole (0,0, 1,0,0,0) for various values of A.
We do it by computing in coordinates.

Consider coordinates on the upper hemisphere of S? induced by the projection (g1, g2, g3)

(g1, q2). The inverse map ¢ is given by ¢(x,y) = (x,y, /1 — 22 — y2). Since
1
¢*(q1dga A dgs + q2dgs A dq1 + qzdgy A dg2) = ~dz Ady,
where z = /1 — 22 — y2, the symplectic form w), in the canonical coordinates corresponding
to (z,y) is
A
wy = dx ANdpz +dy N dpy + —dx A dy.
z

The systems (T*S%, wy, hy) have SO(2) as a symmetry group: SO(2) acts by the lift of the
rotation of S? about the vertical axis. The action is Hamiltonian; we denote a corresponding
moment map by ®,. In coordinates the action of SO(2) = S! is given by

ia.( )= cosf sind x cosf sinf Pz
e Z,Y,PxsPy) = —sinf@ cosé Y ’ —sinf cosf Dy .

The moment map @, (which is defined up to an additive constnat) is then

PA(T, Y, Py Py) = YDz — TPy — Az + .

Note that the North pole in these coordinates is the origin and that the moment map is
normalized so that ®,(0) = 0.

The metric g by assumption is the one that comes from the embedding of S? as a round
sphere in R3. We now normalize the metric by setting the radius of the sphere to 1. Then the
sphere is cut out by the equation

(28) Y@ =1,

In our coordinates the metric g is given by

1+ 2,
(9i5) = ( w

22

—_
+

NM|@MNM|§

N———
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Consequently the dual metric gx is given by

y? zy
=217 T2,
_ry 14+ %
Hence the Hamiltonian h) is

1 y? Ty x?
I (2,9, P2, py) = 5 ((1 + ;) Py = 25 Papy + <1 + )y ) 42

We are now in position to compute the reduced space (which is not going to be smooth!) and
the reduced Hamiltonian.
Observe that ®;*(0) N {y = 0} is the set

{(@,0,p0,py) | Py = A(l_fcﬂ}-
Note that
1-V1-22=1- (1- %:f - élA + O(2%)) = %x2 + ix‘l + 0(2%),
S0
A@ = é(a: + 1563 +0(2°))

T 2 8

is smooth at # = 0. Consider now a map v : (—1,1) x R — &,1(0), (u, pu) — (u, 0, py, A(1 —
V1 —wu?2)/u). Given any point point (z,y, pz,p,) there is an angle 6 so that € - (z,y, ps, py)
is of the form (x,0,%,x). It follow that the image of % in @;1(0) intersects every orbit of
SO(2). In fact the image intersects every orbit except {(0,0,0,0)} in exactly two points:

(1,0, pus A(1 = V1 —u?)/u) and (—u, 0, —py, —A(1 — v/1 — u?)/u). Hence the composition
(~1,1) x R % &71(0) — @;1(0)/S0(2)

is a branched double cover. Therefore, to understand the extremal points of the reduced
Hamiltonian, it is enough to understand the extremal points of ¥*hy. It is easy to see that
2
u? ) ()\1 -1 —u2)
2
u

2

2

¢ ha(u, pu) = T +V1—w?

P2+ (1+
2
1 1, (1-vVI—u?
= 51— u)py + 5 A7 (%) + V1 -l

Hence the critical points of the function ¢*hy(u, p,,) are of the form (u*,0) where u* is a critical
point of the effective potential

2
U () = %v (1_— ”ul_“2> VI
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Moreover, relative maxima of Uy correspond to unstable equilibria of Hy and relative minima
to stable equilibria.

Remark 151. Since we are working on the branched double cover of the reduced system, any
pair of critical points of Uy of the form 4u, u # 0 correspond to the same critical point of the
reduced system. Therefore only the non-negative critical points u* of the potential need be
considered.

We now concentrate on ©* = 0. Since

\/1—u2:1—3u2+(’)(u4)

2
(1—7\/5——u2> - %u +O(?)? = iuQ +0(u?).

Therefore

U = 2t i1 L v owdy =140 (X 1) w2y owd)
Au) = A% u 5 U u’) = 5\ 1 u u?).
We conclude that if ’\Tz > 1 then the North pole is a stable equilibrium of the Hamiltonian
systems (T*S2,wy, hy). Hence the Lagrange top in the upright position is SO(2)-stable if it is
spinning sufficiently fast.

Homework Problem 26. if 1 < A? < 4 then the potential Uy has another positive critical
point v*. Find v* and deterine the stability of the corresponding relative equilibrium.

24. LECTURE 24. COMPLETELY INTEGRABLE SYSTEMS

Definition 152. Let (M,w) be a symplectic manifold and let h be a smooth function on M.
The Hamiltonian system (M,w,h) is completely integrable if there exists n = %dimM
smooth functions f; = h, fo,..., f,, on M such that

1. the functions Poisson commute: {f;, f;} = 0 for all ¢ and j;
2. the differentials df; are linearly independent on a dense open subset M,., of M.

By abuse of language we will refer to the collection (M, w, fi,... f,) as a completely integrable
system.

Proposition 153. Let (M,w) be a symplectic manifold. Suppose that there exist k smooth
functions fi,..., fx on M which Poisson commute (i.e.,{fi, f;} =0 for alli and j). If c € R¥
is a reqular value of the map f : M — R¥ defined by f(m) = (fi(m),..., fr(m)), then the
submanifold Z := f~1(c) is coisotropic. In particular, if k = %dim M, then Z is Lagrangian.

Proof. Fix z € Z. The tangent space 1.7 is ker df (z) = Nkerdf;(z). Let V be the subspace of
T.M spanned by the Hamiltonian vector fields Xy, (z). We claim that 7.7 is the symplectic
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perpendicular to V. Indeed

vET,Z < v € kerdf;(z) for all i
= 0= (dfi(z),v) = w(Xy,v) foralli
—oveV¥

On the other hand, since

0={fi, fi} = _W(Xfi’ij)’
the subspace V' is isotropic: V' C V¥. Hence T,Z% = (V¥)* =V C V¥ =T,Z, ie., T,Z is
coisotropic. Finally note that the coisotropic submanifolds of half the dimension of the manifold

are Lagrangian. ]
Consider again a completely integrable system (M, w, f1,... , fn). We now make two blanket
assumptions:

1. The map f = (fi1,..., fn) : M — R™ is proper.
2. The level sets of the map f : M., — R" are connected.

Note the properness of f implies that the level sets f~!(r) of f are all compact.

Theorem 154 (Eheresman fibration theorem). Let X and Y be manifolds. Assume thatY is
connected. Suppose f: X — Y be a proper submersion. Then f: X — Y is a fiber bundle with
a typical fiber f~1(y), for somey € Y.

Proof. See, for example, [Broker and Jénich]. O

We conclude that under our assumptions the study of completely integrable systems leads to
a study of fiber bundles with the following properties: the total space is symplectic and the
fibers are compact connected Lagrangian submanifolds.

Theorem 155. Let (Q,w) be a symplectic manifold. Suppose F' — @ L Bisa fiber bundle
with compact connected Lagrangian fibers. Then the fibers are tori. In fact, for everyb € B, the
abelian group Ty B acts transitively on the fiber Fy = p~L(b) with a zero dimensional isotropy
group.

Remark 156. Recall that if a group G acts on a space X, then then the isotropy groups of
two points on the same orbit are conjugate: if y = g -z then G, = gG,g~'. Hence if G is
abelian, the isotropy group of a point is the same for all points in the orbit. It follows that the
isotropy group L; C T B for the action of T, B on the fiber F}, depends only on b € B. The
set L = UpepLy is called the period lattice.

Proof. 1. We start by defining a linear map v from the vector space T;" B to the space of vector
fields x(Fp) on the fiber Fy, = p~1(b).

Let p € T B be a covector. Then there exists a smooth function f on B such that df(b) = p
(For example if p = > a;dx; in coordinates, then f = Y a;x; has the desired property. Extend
f to a smooth function on all of B by multiplying it by an appropriate compactly supported
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function). Consider the Hamiltonian vector field X, s of the function p* f on (Q,w). Then for
ge by

(wg)* (Xpe£(9)) = d(p" f)(a) = dp(q) o df (b) = dp(q) o p.
Since Fy is Lagrangian in (Q,w), for any ¢ € F, the map (wq)# sends the tangent space T, F;
bijectively onto the annihilator (7, F})° of T, Fy in T, Q. For any p € T;' B, the covector dp(q)op

lies in (7, F})°. Consequently the vectors X« t(q) = ((wq)?)~(dp(g) o p) form a vector field on
the fiber F}. Note that this vector field depend only on the covector p and not on the function
f. We therefore get a map v : Ty B — x(F}p) defined by

p = (g = ((wg)™) " (dp(g) o p).
Note well that v is linear and a bijection.
2. Next we argue that for any covectors p,p’ € T)* B the vector fields v(p) and v(p’) commute.
Choose f' € C*°(B) such that df’(b) = p’. Then since the vector field X,«; is tangent to the
fibers of p and the function p* f’ is constant on the fibers of p,

0= Xpes(p"f) ={p" 1, 0" [}
Since the map h — Xp, C®(Q) — x(Q), is a Lie algebra map, it follows that [v(p),v(p’)] =
[Xor s X 1] = X g pe 3y = 0-
3. Let ¢! denote the time ¢ flow of the vector field v(p) on the fiber F,. Since the fiber is
compact, the flow exists for all time. Since [v(p),v(p')] = 0 the flows ¥ and ¥ commute:

(29) w} ol = ¢t oy
Also, since v is linear,
ap _  p
Pt = Pat-

We now define a map T;'B x Iy, — F;, by

(p,q) = p-q=¢(q).
It follows from (29) that the map is an action of the abelian Lie group G = T;B on the
manifold Fj.

4. Tt remains to argue that the action is transitive on Fj and has zero dimensional isotropy
group. These are consequences of the fact that the map v is bijective.

Since the fiber Fy, is connected and has the same dimension as the group T, B, it is enough to
prove that the orbits are open. For the latter it is enough to show that the induced map from
the Lie algebra g of G = T B to a tangent space T;(F}) is a bijection. Now for any p € Ty B
the curve

Vp(s) = ps
is a one-parameter subgroup of the Lie group 7' B. For any g € I}

d d d
E\tzovp(t) q= E’t:()(pip((ﬁ = E!tZOSD?l(Q) =v(p)(q).

Since the map v is bijective, the induced map g — T,(Fp) is an isomorphism and we are
done. O



