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Stability and bifurcations of symmetric tops
Eugene Lerman

Abstract: We study the stability and bifurcation of relative equi-
libria of a particle on the Lie group SO(3) whose motion is governed
by an SO(3) × SO(2) invariant metric and an SO(2) × SO(2) in-
variant potential. Our method is to reduce the number of degrees
of freedom at singular values of the SO(2) × SO(2) momentum
map and study the stability of the equilibria of the reduced sys-
tems as a function of spin. The result is an elementary analysis of
the fast/slow transition in the Lagrange and Kirchhoff tops.

More generally, since an SO(2) × SO(2) invariant potential on
SO(3) can be thought of as Z2 invariant function on a circle, we
analyze the stability and bifurcation of relative equilibria of the
system in terms of the second and fourth derivative of the function.
Keywords: Bifurcation, stability, finite-dimensional Hamiltonian
systems.
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1. Introduction

Recall the geometric mechanics approach to classical systems which was de-
veloped in the early 1960s: A “simple” classical mechanical system consists
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of a manifold Q, the configuration space of the system, a Riemannian metric
g in Q, the kinetic energy, and a function V : Q → R, the potential. These
data define a Hamiltonian H : T ∗Q → R on the cotangent bundle of Q which
is given by

H(q, p) = 1
2g

∗
q (p, p) + V (q)

where q ∈ Q, p ∈ T ∗
q Q and g∗ ∈ Sym2(T ∗Q) is the dual metric. The Hamil-

tonian H together with the canonical symplectic form ωT ∗Q on the cotangent
bundle give rise to a vector field ΞH : T ∗Q → T (T ∗Q) which is uniquely
defined by the equation

ωT ∗Q(ΞH , ·) = dH.

An action of a Lie group G on Q that preserves the metric g and the po-
tential V lifts to an action of G on the cotangent bundle T ∗Q that pre-
serves the Hamiltonian H and the symplectic form ωT ∗Q. Noether’s theorem
in this setting translates into the existence of an equivariant moment map
μ : T ∗Q → g∗ (g∗ denotes the dual of the Lie algebra g of the Lie group G)
with the property that μ is constant along the intergral curves of the vector
field ΞH . Since the Hamiltonian H and the symplectic form are G-invariant
the Hamiltonian vector field ΞH is G-invariant as well. Hence its flow ΦH

t

is G-equivariant. Noether’s theorem combined with equivariance of the flow
implies that we have continuous time dynamical systems on the topological
spaces {μ−1(α)/Gα}α∈g∗ , where Gα denotes the stabilizer of α ∈ g∗ under
the coadjoint action. When α is a regular value of μ and the action of G is
proper then, thanks to a theorem of Meyer [15] and of Marsden and Weinstein
[14], the topological space M//αG := μ−1(α)/Gα is naturally a symplectic
orbifold and the flow induced by ΦH

t is a flow of a Hamiltonian vector field.
The theorem of Meyer and Marsden-Weinstein is known as regular symplectic
reduction and as (Meyer-)Marsden-Weinstein reduction (a number of people
seem to be unaware of Meyer’s paper).

A top is a classical mechanical system of the form (T ∗SO(3), H(q, p) =
1
2g

∗
q (p, p)+V (q)) where SO(3) is the special orthogonal group and g is a left-

invariant metric on the group. A top is symmetric if two of its principal mo-
ments of inertia are equal and the potential is invariant under the additional
symmetry. This amounts to the metric g being invariant under the multipli-
cation on the right by SO(2) (here SO(2) is the subgroup of SO(3) fixing the
third standard basis vector e3 = (0, 0, 1)), and the potential V ∈ C∞(SO(3))
being SO(2) × SO(2)-invariant. Here and elsewhere SO(2) × SO(2) acts on
SO(3) by multiplication on the left and right, respectively.
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In a symmetric top one can view the rate of spin about its axis of sym-
metry as a bifurcation parameter. Geometrically this amounts to viewing a
top as a family of Hamiltonian systems on the unit 2-sphere S2:

{
(T ∗S2, ωT ∗S2 + rωS2 , h(q, p) = 1

2g
∗
q (p, p) + V (q))

}
r∈R

,

where ωT ∗S2 is the canonical symplectic form on the cotangent bundle, ωS2

is the standard area form on the sphere, g is the standard round metric, and
we have identified the potential of the top with an SO(2)-invariant function
on S2. See Corollary 2.3 below. Note that there is no loss of generality in
assuming that r ≥ 0 since r < 0 corresponds to spin in the opposite direction.

Theorem 2 of [20] implies that the algebra C∞(S2)SO(2) of invariant func-
tions on the sphere is isomorphic to C∞(S1)Z/2, where Z/2 = {±1} acts on
S1 = {(x, z) ∈ R

2 | x2 + z2 = 1} by (−1) · (x, z) = (−x, z). Parameterize the
upper half of S1 by

f : (−1, 1) → S1, f(u) = (u,
√

1 − u2).

Then f pulls back Z/2-invariant functions on S1 to Z/2 invariant functions on
(−1, 1) (where −1 ∈ Z/2 acts on (−1, 1) by (−1) · u = −u). It follows from a
theorem of Whitney that C∞((−1, 1))Z/2 is isomorphic to C∞([0, 1)). That is,
for any k ∈ C∞((−1, 1))Z/2 there is a unique � ∈ C∞([0, 1)) with k(u) = �(u2).
(Recall that � ∈ C∞([0, 1)) iff there is ε > 0 and �̃ ∈ C∞((−ε, 1)) with
� = �̃|[0,1).) Therefore given a function V ∈ C∞(S2)SO(2) there is a unique
function W ∈ C∞([0, 1)) so that

W (u2) = V (u, 0,
√

1 − u2) for all u ∈ [0, 1).

We are now in position to formulate our stability and bifurcation result. Note
that for us “stability” means Lyapunov stability.

Theorem 1.1. Consider a 1-parameter family of SO(2)-invariant Hamilto-
nian systems

(1.2)
{

(T ∗S2, ωT ∗S2 + rωS2 , h(q, p) = 1
2g

∗
q (p, p) + V (q))

}
r≥0

,

where SO(2) acts by the lift of rotations about e3 = (0, 0, 1), ωT ∗S2 is
the canonical symplectic form on the cotangent bundle, ωS2 is the stan-
dard area form on the sphere, g is the standard round round metric and
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V ∈ C∞(S2)SO(2). Let W ∈ C∞([0, 1)) be the function with

W (u2) = V (u, 0,
√

1 − u2)

for all u ∈ [0, 1). Then

(i) If W ′(0) > 0 then the straight up top (i.e. the point (e3, 0) ∈ T ∗S2 where
e3 = (0, 0, 1)) is stable for all values of r.

(ii) Suppose W ′(0) < 0 and W ′′(0) > W ′(0). Then for r > r0 :=
√
−8W ′(0)

the straight up top is stable. As r decreases below r0 the top loses sta-
bility and we get a branch of stable relative equilibria bifurcating off the
straight up position. That is, a “Hamiltonian Hopf” bifurcation takes
place.

u

r0

r

(iii) Suppose W ′(0) < 0 and W ′′(0) < W ′(0). Then for 0 ≤ r ≤ r0 the straight
up top is unstable. As r increases past r0 =

√
−W ′(0) the straight up

top gains stability. Additionally a branch of unstable relative equilibria
bifurcates off the straight up position.

u

r0

r

Example 1.3 (Lagrange Top). For the Lagrange top the potential V ∈
C∞(SO(3))SO(2)×SO(2) is given by V (A) = 〈Ae3, e3〉 for all A ∈ SO(3). Hence
the corresponding function V ∈ C∞(S2)SO(2) is

V (q) = 〈q, e3〉 = q3.

Since V (u, 0,
√

1 − u2) =
√

1 − u2, the function W ∈ C∞([0, 1)) is given by

W (t) =
√

1 − t.
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Since W ′(0) = −1
2 < 0 and since W ′(0) < −1

4 = W ′′(0) we are in the case
(ii) of Theorem 1.1: as the rate of spin decreases the straight up top loses
stability at r0 = 2 and a stable relative periodic orbit appears nearby, i.e.,
the tip of the top will trace out a circle around the vertical axis.

Example 1.4 (Kirchhoff top). A Kirchhoff top is a family of symmetric tops
with the potential V (A) = 〈Ae1, e1〉2 + 〈Ae2, e2〉2 + c〈Ae3, e3〉2 where c > 0 is
a constant. It corresponds to the SO(2)-invariant function V : S2 → R given
by

V (q) = q2
1 + q2

2 + cq2
3.

Since V (u, 0,
√

1 − u2) = u2 + c(1 − u2) = c + (1 − c)u2 the function W ∈
C∞([0, 1)) is given by W (t) = c+(1−c)t. Then W ′(0) = 1−c and W ′′(0) = 0.
Therefore if c < 1 the derivative W ′(0) > 0 and there is no bifurcation: the
upright top is stable for all values of r. If c > 1

W ′(0) = 1 − c < 0 = W ′′(0),

so a “Hamiltonian Hopf” bifurcation takes place.

It has been argued that Lagrange and Kirchhoff tops undergo Hamilto-
nian Hopf bifurcations as the rate of spin decreases past a critical value: the
sleeping top loses stability and a stable periodic orbit appears nearby [4, 8, 3].
Since in symmetric tops these periodic orbits are in fact relative equilibria it
may be better to view the bifurcation as figure 8 bifurcations. These figure 8
bifurcations are typical for one degree of freedom Hamiltonian systems with
Z/2 symmetries [7].

Organization of the paper

In Section 2 we review a result of Satzer and Kummer on the symplectic quo-
tients of T ∗P where S1 → P → B is a principal S1 bundle. We use it reduce
the study of symmetric tops to the study of families of Hamiltonian systems
on a magnetic 2-sphere. This is an old idea and I include it to keep the paper
self-contained. Section 3 recalls the theory of singular symplectic reduction.
We start with the developments in late 1980s – early 1990s and continue with
more recent work. We then recall the notion of a C∞-ring and formulated the
differential spaces of Sikorski in terms of C∞-rings. We describe Śniatycki’s
view of singular symplectic quotients as differential spaces. In Section 4 we
reduce the study of families of S1-symmetric Hamiltonian systems on a mag-
netic 2-sphere to one variable calculus. Section 5 proves the main result of
the paper.
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2. Regular S1 reduction

It is well known that symplectic quotients of the cotangent bundle T ∗P of a
principal bundle G → P → B by the lifted action of G are symplectic fiber
bundles over T ∗B with coadjoint orbits of G as fibers. If the group in question
is abelian the proof is simpler since the fibers are points. The result is due
to several people. I believe that the version below, Theorem 2.1, is mostly
due to Satzer [21] and Kummer [10]. Kummer, in turn, relies on the work
of Sternberg [24] on minimal coupling as reformulated by Weinstein in [26].
I learned the formulation and the proof of the theorem from Victor Guillemin
in the mid 1980s.

Theorem 2.1. Let P be a manifold with a free S1 action, h(q, p)= 1
2g

∗
q (p, p)+

V (q) an S1-invariant Hamiltonian on the cotangent bundle T ∗P (so g is an
S1-invariant metric on P and V ∈ C∞(P )S1 an invariant potential) and
μ : T ∗P → R = Lie(S1)∗ the associated invariant moment map. View P as a
principal S1-bundle over B := P/S1 with the projection π : P → B.

Then for any r ∈ R metric g induces a diffeomorphism

ϕr : T ∗B → T ∗P//rS
1 := μ−1(r)/S1

between the cotangent bundle of the base B and the symplectic quotient.
Moreover

ϕr
∗ωr = ωT ∗B + rτ ∗F

where ωr is the reduced symplectic form on the quotient T ∗P//rS
1, F ∈

Ω2(B) is the curvature of the connection 1-form A on P defined by the metric
g and τ : T ∗B → B the canonical projection. Finally the pullback by ϕr of
the induced Hamiltonian hr is

(2.2) (ϕr
∗hr) (b, η) = 1

2 ḡ
∗
b (η, η) + 1

2g
∗
q (Aq, Aq) + V (b)

for all b ∈ B, η ∈ T ∗
b B, where q ∈ π−1(b) is any point in the fiber of π

above b and ḡ is the metric induced on B by g. Note that we are identifying
V ∈ C∞(P )S1 with the corresponding function on B.

Sketch of proof. The zero level set of μ : T ∗P → R is the annihilator V ◦ of
the vertical bundle of π : P → B. It is not hard to show that the map

ψr : V ◦ → μ−1(r), ψr(q, p) = (q, p + rAq)
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is an S1-equivariant diffeomorphism. Here as above q ∈ P is a point, p ∈ V ◦
q

a covector. Hence ψr descends to a diffeomorphism

ϕr : V ◦/S1 	 T ∗B → μ−1(r)/S1.

The pullback by ψr of the tautological 1-form θT ∗P on the cotangent bundle
of P turns out to be the sum of pr∗θT ∗B and r A (where pr : V ◦ → T ∗B is the
canonical submersion and we identified A ∈ Ω1(P ) with its pullback to V ◦):

ψ∗
rθT ∗P = pr∗θT ∗B + r A,

see [10]. Consequently

ϕ∗
rωr = dθT ∗B + rdA = ωT ∗B + rτ ∗F.

Finally equation (2.2) follows from the definition of the diffeomorphism ψr

and the fact that the connection 1-form A is induced by the metric g.

Corollary 2.3. The symplectic quotient at r ∈ R = (Lie(SO(2))∗ of a
symmetric top

(T ∗SO(3), ωT ∗SO(3), h(q, p) = 1
2g

∗
q (p, p) + V (q))

with respect to the action of SO(2) by multiplication on the right is the
classical mechanical system

(2.4) (T ∗S2, ωT ∗S2 + rωS2 , h(q, p) = 1
2 ḡ

∗
q (p, p) + V (q))

with SO(2) symmetry, where ḡ is an SO(3) invariant metric on the sphere S2

induced by g, ḡ∗ the dual metric and V ∈ C∞(SO(3))SO(2)×SO(2) is identified
with an SO(2) invariant function on S2 which we again call V .

Proof. We apply Theorem 2.1 to the action of S1 = SO(2) on P = SO(3)
by multiplication on the right. Then B = P/S1 is the standard 2-sphere S2,
the metric g is left SO(3) and right SO(2)-invariant and V ∈
C∞(SO(3))SO(2)×SO(2) = C∞(SO(3)/SO(2))SO(2). Then the induced met-
ric ḡ on S2 is SO(3)-invariant hence (up to a scalar multiple that we ignore)
is the standard round metric on S2. The connection 1-form A and its cur-
vature F ∈ Ω2(S2) are both SO(3)-invariant. Hence F is the standard area
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form on S2 (possibly up to a factor that depends on normalization that we
again ignore). Finally the function

q 
→ 1
2g

∗(Aq, Aq)

on SO(3) is SO(3)-invariant, hence constant. There is no harm in dropping
it. We conclude that under the diffeomorphism ϕr : T ∗S2 → T ∗SO(3)//rS1

the reduced classical mechanical system is

(T ∗S2, ωT ∗S2 + rωS2 , h(q, p) = 1
2 ḡ

∗
q (p, p) + V (q)).

Remark 2.5. It is convenient to identify the cotangent bundle T ∗S2 of the
2-sphere with a submanifold of R6:

T ∗S2 = {(q, p) ∈ R
3 × R

3 | 〈q, q〉 = 1, 〈q, p〉 = 0},

where 〈·, ·〉 is the standard inner product on R
3. With this identification the

action of SO(2) on T ∗S2 becomes identified with the restriction of the diag-
onal action on R

3 × R
3 by rotations about e3 = (0, 0, 1). The corresponding

moment map μr : (T ∗S2, ωT ∗S2 + rωS2) → R is given by

(2.6) μr(q, p) = 〈q × p, e3〉 + rq3

where × here is the cross product.

3. Digression: C∞-rings and differential spaces

In the next section we will use symplectic reduction of the SO(2)-symmetric
Hamiltonian system

(T ∗S2, ωT ∗S2 + rωS2 , μr : T ∗S2 → R, h(q, p) = 1
2g

∗
q (p, p) + V (q))

at r = μr(e3, 0) to analyze stability and bifurcation of the fixed point (e3, 0).
Since r is a singular value of the SO(2) moment map μr (μr is given by (2.6))
the reduced space T ∗S2//rSO(2) = μ−1

r (r)/SO(2) is singular. We will argue
that a neighborhood of the image of (e3, 0) in T ∗S2//rSO(2) is isomorphic
to T ∗((−1, 1))/Z2. To carry this out we need to explain what we mean by
“isomorphic.” In order to do this we will need to recall the notion of a C∞-ring
and of a differential space.
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To set the stage we briefly recall the theory of singular reduction as it was
developed in late 1980s – early 1990s. It has been known since 1970s that if α
is a regular value of a G-equivariant moment map μ : M → g∗ that arises from
a proper action of a Lie group G on a symplectic manifold (M,ω) and if the
action of the stabilizer Gα of α on the level set μ−1(α) is free then the α-level
set is a manifold and the restriction of the symplectic form ω|μ−1(α) descends
to a symplectic form ωα on the symplectic quotient M//αG := μ−1(α)/Gα.
If additionally h ∈ C∞(M)G is an invariant Hamiltonian then its (local) flow
on M is G-equivariant and preserves μ−1(α) hence induces a flow on the
quotient M//αG. On the other hand h|μ−1(α) descends to a smooth function
hα ∈ C∞(M//αG) and the flow of hα on (M//αG,ωα) agrees with the flow
induced by h. If the action of Gα on μ−1(α) is only locally free then the level
set μ−1(α) is still a manifold, the quotient M//αG is naturally a symplectic
orbifold and again the flow on M//αG induced by an invariant Hamiltonian
h is the flow of the function hα.

If the action of Gα on μ−1(α) is not locally free then the flow of an in-
variant Hamiltonian h ∈ C∞(M)G still preserves the level set μ−1(α) and
induces a flow on the space M//αG = μ−1(α)/Gα. The set M//αG is natu-
rally a topological space (take the subspace topology on μ−1(α) and quotient
topology on μ−1(α)/Gα). One refers to M//αG as the reduced space at α ∈ g∗

and as a (singular) symplectic quotient.
The singular symplectic quotients are highly structured:

3.0.i. The space M//αG is a symplectic stratified space [22, 2, 12]. This
means that the topological space M//αG naturally decomposes into
a collection of symplectic manifolds (these manifolds are called sym-
plectic strata) and that the singularities of M//αG are tame — see
[22, 12]. More precisely for any Lie subgroup H of G the intersection
M(H) ∩ μ−1(α) is a manifold (M(H) denotes the subset of points of M
whose G-stabilizer is conjugate to H). The quotient

(M//αG)(H) := (M(H) ∩ μ−1(α))/Gα

is a manifold as well and the restriction of the symplectic form ω on
M to M(H) ∩ μ−1(α) descends to a symplectic form on (M//αG)(H).
The manifolds (M//αG)(H) are the symplectic strata of M//αG.

3.0.ii. The quotient map √ : μ−1(α) → M//αG induces an isomorphism

√∗ : C0(M//αG) → C0(μ−1(α))Gα . Consequently the preimage of the

restriction C∞(M)G|μ−1(α) under √∗ is a subalgebra of C0(M//αG)
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which is denoted by C∞(M//αG). Since

C∞(M//αG) 	 C∞(M)G/Iα

where Iα = {f ∈ C∞(M)G | f |μ−1(α) = 0} and since Iα is a Poisson
ideal [1] the algebra C∞(M//αG) is naturally a Poisson algebra.

3.0.iii. The Poisson bracket on C∞(M//αG) is compatible with the symplectic
forms on the strata of the reduced space M//αG: the restriction map

C∞(M//αG) → C∞((M//αG)(H))

is Poisson for every subgroup H < G (see [22]).
3.0.iv. The compatibility of the Poisson brackets and of the symplectic forms

on the strata of M//αG gives two complementary ways to view the flow
on the symplectic quotient M//αG induced by an invariant Hamilto-
nian h ∈ C∞(M)G. One can view it as a collection of Hamiltonian
flows on the strata. Alternatively the Hamiltonian hα ∈ C∞(M//G)
induced by h defines a derivation

{hα,−} : C∞(M//G) → C∞(M//G),

and the flowlines γ(t) of the induced flow are integral curves of this
derivation:

d

dt

∣∣∣∣
t

f ◦ γ = {hα, f}(γ(t))

for all functions f ∈ C∞(M//G).

While the theory described above caused a bit of excitement in 1990s, a
particularly nagging question remained: what were singular symplectic spaces
an example of? Several decades later it seems to me that the best answer
so far was found by Jedrzej Śniyaticki [23]: singular symplectic quotients
are differential spaces in the sense of Sikorski or, more generally, C∞-locally
ringed spaces [9]. It is not a complete answer and more work remains to
be done: see Remark 3.28 below. One can also plausibly argue that derived
differential-geometric symplectic stacks would be another promising home for
singular symplectic quotients. However at the moment derived differential
geometry is not developed enough for the study of dynamics on singular
symplectic quotients.

To explain what differential spaces are we start by recalling the notion
of a C∞-ring. The definition below is not standard, but it’s equivalent to the
standard one [9] and is easier to make sense of in the first pass (unless you
have some background in categorical universal algebra which I don’t).
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Definition 3.1. A C∞-ring is a set C together with an infinite collection of
operations

{gC : Cm → C }m≥0,g∈C∞(Rm)

(where C 0 := {∗}, a one-point set and R
0 := {0}) so that for all n,m ∈ N,

all g ∈ C∞(Rm) and all f1, . . . , fm ∈ C∞(Rn)

(g ◦ (f1, . . . , fm))C (c1, . . . , cn) = gC ((f1)C (c1, . . . , cn), . . . , (fm)C (c1, . . . , cn))

for all (c1, . . . , cn) ∈ C n. Additionally we require that for every coordinate
function xj : Rm → R,

(xj)C (c1, . . . , cm) = cj .

Example 3.2. The algebra of functions C∞(M) on a smooth manifold M is
a C∞-ring: for any n > 0, any function f ∈ C∞(Rn) one defines

fC∞(M) : (C∞(M))n → C∞(M)

by
fC∞(M)(a1, . . . , an) := f ◦ (a1, . . . , an)

for any n-tuple of functions a1, . . . , an ∈ C∞(M).

Example 3.3. The real line R is a C∞ ring since it’s the algebra of smooth
functions on a one point manifold ∗. Explicitly, given f ∈ C∞(Rn) the corre-
sponding operation fR : Rn → R “is” the function f :

fR(a1, . . . , an) := f(a1, . . . , an),

That is, the operation fR(a1, . . . , an) is the evaluation of the function f on
the n-tuple (a1, . . . , an)) of real numbers.

Remark 3.4. Any C∞-ring A has an underlying R-algebra. This is because
addition and multiplication functions f(x, y) = x+y, g(x, y) = xy are smooth
functions as are multiplications by scalars mλ(x) = λx (for all λ ∈ R) hence
define appropriate binary and unary operations on the set A making it into
an R algebra.

We will not notationally distinguish between C∞-rings and their under-
lying R-algebras.
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Definition 3.5. A morphism of A → B of C∞-rings is a map of sets ϕ :
A → B which preserves all the operations: for any n > 0, any a1, . . . , an ∈ A
and any f ∈ C∞(Rn)

ϕ(fA (a1, . . . , an)) = fB(ϕ(a1), . . . , ϕ(an)).

Definition 3.6. A point of a C∞-ring A is a map of C∞-rings p : A → R.

Example 3.7. Let M be a manifold, p ∈ M a point and evp : C∞(M) → R

the evaluation at p: evp(f) = f(p). Then evp is a point of the C∞-ring C∞(M).

Definition 3.8. An ideal in a C∞ ring A is an ideal in the underlying R-
algebra.

The following theorem is useful in defining a C∞-ring structure on singular
symplectic quotients.

Theorem 3.9. Let A be a C∞-ring and I ⊂ A an ideal in the underlying
R-algebra. Then the quotient R-algebra A /I is naturally a C∞-ring: for any
n > 0 and any function f ∈ C∞(Rn) the map

fC /I : (A /I)n → A /I, fC /I(c1 + I, . . . , cn + I) := fC (c1, . . . , cn) + I

is well-defined for all (c1 + I, . . . , cn + I) ∈ (A /I)n.

Proof. The result is well-known. See [16] or [9] for a proof.

Definition 3.10. A C∞-ring A is point determined if points separate ele-
ments of A . That is, if a ∈ A and a �= 0 then there is a point p : A → R so
that p(a) �= 0.

Remark 3.11. There are many C∞-rings that are not point determined.
The simplest example is the quotient ring C∞(R)/〈x2〉 where 〈x2〉 is the
ideal generated by the function x2. This ring has only one point p which is
given by

p(f + 〈x2〉) = f(0).
See [16].

Definition 3.12. A differential space (in the sense of Sikorski) is a pair
(N,C∞(N)) where N is a topological space and C∞(N) is a set of real-
valued function on N subject to the following three conditions (the notation
C∞(N) is meant to be suggestive of a smooth structure on the space N):

3.12.i. The topology on N is the smallest topology making every function
in C∞(N) continuous.
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3.12.ii. For any n > 0, any smooth function f ∈ C∞(Rn) and any n-tuple
a1, . . . , an ∈ C∞(N), the composite f ◦ (a1, . . . , an) is in C∞(N).

3.12.iii. For any open cover {Ui}i∈I and any function g : N → R so that for
each i ∈ I there is ai ∈ C∞(N) with g|Ui = ai|Ui the function g is in
C∞(N).

Remark 3.13. Condition (3.12.i) amounts to requiring that the sets {{f �=
0} | f ∈ C∞(N)} generate the topology on N . This may be viewed as a
C∞-analogue of the Zariski topology on affine varieties. One can also show
that (3.12.i) is equivalent to existence of bump functions: for any open set
U ⊂ N and for any point x ∈ U there is a function f ∈ C∞(N, [0, 1]) with
supp f ⊂ U and f identically 1 near x.

Condition (3.12.ii) amounts to saying that the R-algebra C∞(N) is in fact
a C∞-ring. For some reason most papers that deal with differential spaces
never explicitly mention C∞-rings. Note that the C∞-ring C∞(N) is point
determined since it consists of actual functions and for any point p ∈ N the
evaluation map evp : C∞(N) → R is a point of the C∞-ring C∞(N).

The third condition can be interpreted as follows: by restricting the func-
tions in C∞(N) to open subsets of N one obtains a presheaf. Denote its
sheafication by C∞

N . Condition (3.12.iii) then amounts to requiring that the
C∞-ring of global section C∞

N (N) of this sheaf is the C∞-ring C∞(N). Note
that in particular a differential space is implicitly a C∞-ringed space.

Definition 3.14. A map or a morphism from a differential space (M,C∞(M))
to a differential space (N,C∞(N)) is a map of underlying sets ϕ : M → N
so that for any f ∈ C∞(N) the composite f ◦ ϕ is in C∞(M).

Notation 3.15. Differential spaces and their morphisms form a category
which we denote by DiffSp.

The reader unfamiliar with C∞-schemes should feel free to ignore the
following remark. It will play no role in the paper.

Remark 3.16. It is not too hard to show that the category of differential
spaces embeds into the larger category of C∞-ringed spaces. C∞-schemes
[5, 9] also embed into the category of C∞-ringed spaces. It is not at all clear
which differential spaces are C∞-schemes and conversely.

A possible exception is formed by affine schemes that come from finitely
generated and point determined C∞-rings. These are exactly the differential
spaces that are isomorphic to closed subsets of Euclidean spaces [11]. This
class includes all second countable Hausdorff manifolds.

Part of the problem of comparing differential spaces and affine
C∞-schemes is that for given a differential space (N,C∞(N)) it is not clear
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that a point p : C∞(N) → R of the C∞-ring C∞(N) has to come from eval-
uation at a point x ∈ N . If N is a second countable manifold then any point
p : C∞(N) → R of the C∞-ring C∞(N) does come from an evaluation at
some point x ∈ N by the famous “Milnor’s exercise.”

A vector field v on a manifold M can be defined as a derivation v :
C∞(M) → C∞(M) of the R-algebra of smooth functions on M with values
in C∞(M): v is R-linear and for any two functions f, g ∈ C∞(M)

v(fg) = v(f)g + fv(g).

For C∞-ring A there is another notion of a derivation of A with values in A :

Definition 3.17. A C∞-derivation of a C∞-ring A is a map X : A → A so
that for any n > 0, any f ∈ C∞(Rn) and any a1, . . . , an ∈ A

X(fA (a1, . . . , an)) =
n∑

i=1
(∂if)A (a1, . . . , an)X(ai).

Remark 3.18. One can show that for a large class of C∞-rings that includes
point determined C∞-rings the two notions of derivations coincide. See [27].
Thus if (N,C∞(N)) is a differential space then an R-algebra derivation v :
C∞(N) → C∞(N) is a C∞-ring derivation.

We are now in position to define integral curves of derivations on differ-
ential spaces.

Definition 3.19. Let v : C∞(M) → C∞(M) be a derivation on a differential
space M . An integral curve γ of v through a point p ∈ M is either a map
γ : {0} → M with γ(0) = p or a smooth map γ : (J, C∞(J)) → (M,C∞(M))
from an interval J ⊂ R containing 0 so that

(3.20) d

dx
(f ◦ γ) = v(f) ◦ γ

for all function f ∈ C∞(M). Note that unlike [23] we do not require J to be
an open interval.

The reader may be puzzled why we allow integral curves to only exist
for time t = 0 or to have non-open intervals as domains of definition. Ex-
ample 3.21 below illustrates why this may be useful. Note that for singular
symplectic quotients M//αG and for Hamiltonian hα ∈ C∞(M//αG) induced
by h ∈ C∞(M)G the maximal integral curves of the derivation

{hα, ·} : C∞(M//αG) → C∞(M//αG)
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are maximal integral curves of vector fields on manifolds and so have open
intervals as domains of definition.

Example 3.21. Let M be the standard closed disk in R
2: M = {(x, y) |

x2 + y2 ≤ 1}. Then M is a manifold with boundary and a differential space.
Consider the vector field v = ∂

∂x on M . The integral curve of v through (0, 1)
is γ : {0} → M , γ(0) = (0, 1); it only exists for zero time. Note that v does
have a flow. It’s a smooth map Φ from U = {((x, y), t) ∈ R

2 × R | x2 + y2 ≤
1, (x − t)2 + y2 ≤ 1} → M . It is given by Φ((x, y), t) = (x + t, y). Note that
here we view U ⊂ R

3 as a differential space. Note also that U is not a manifold
with corners as one can see by looking at its singularities.

As in the case of manifolds related derivations have related integral curves:

Lemma 3.22. Let ϕ : (M,C∞(M)) → (N,C∞(N)) be a map of differential
spaces, X : C∞(M) → C∞(M), Y : C∞(N) → C∞(N) two derivations so
that the diagram

C∞(M) C∞(M)

C∞(N) C∞(N)

X

ϕ∗ ϕ∗

Y

commutes. I.e., for all f ∈ C∞(N)

Y (f) ◦ ϕ = X(f ◦ ϕ).

Then for any integral curve γ : I → M of X, ϕ ◦ γ : I → N is an integral
curve of Y .

Proof. The proof is the same as in the case of manifolds:

d

dt
(f ◦ ϕ ◦ γ) = X(f ◦ ϕ) ◦ γ = Y (f) ◦ ϕ ◦ γ.

We now come to the main reason for discussing differential spaces, which
is a theorem due to Śniatycki (see [23], for example).

Theorem 3.23 (Śniatycki). Let (M,ω) be a symplectic manifold with a
proper Hamiltonian action of a Lie group G and corresponding equivariant
moment map μ : M → g∗. Then for any α ∈ g∗ the quotient

M//αG := μ−1(α)/Gα
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is a Hausdorff differential space with the space of smooth functions

C∞(M/αG) := C∞(M)G|μ−1(α).

Sketch of proof. Since the action of G is proper and the stabilizer Gα is closed
in G, the action of Gα on M is proper. Consequently M/Gα and its closed
subset μ−1(α)/Gα are Hausdorff.

It is easy to check that the R-algebra C∞(M)G of G-invariant functions is
a C∞-ring: if a1, . . . , an ∈ C∞(M)G are invariant functions and f ∈ C∞(Rn)
then the composite f ◦ (a1, . . . , an) is also G-invariant. Since

Iα := {f ∈ C∞(M)G | f |μ−1(α)} = 0

is an ideal in C∞(M)G the quotient C∞(M)G/Iα is a C∞-ring (see Theo-
rem 3.9). Hence

C∞(M)G|μ−1(α) = C∞(M)G/Iα

is a C∞-ring.
Conditions (3.12.i) and (3.12.iii) follow from the existence of a G-invariant

partition of unity on M subordinate to a G-invariant open cover of M .

Definition 3.24. Two reduced spaces M//αG and N//βH are isomorphic if
there is an isomorphism

ϕ : (M//αG,C∞(M//αG)) → (N//βH,C∞(N//βH))

of differential spaces (cf. Definition 3.14) so that

ϕ∗ : C∞(N//βH) → C∞(M//αG)

is an isomorphism of Poisson algebras (see 3.0.ii).

Lemma 3.25. Suppose ϕ : (M//αG,C∞(M//αG) → (N//βH,C∞(N//βH))
is an isomorphism of reduced spaces and h ∈ C∞(N//βH)) a Hamiltonian.
Then ϕ sends the integral curves of ϕ∗h (meaning the integral curves of the
derivation {ϕ∗h, ·} : C∞(M//αG) → C∞(M//αG)) to the integral curves of h.

Proof. The proof follows easily from the definition of an isomorphism of re-
duced spaces and Lemma 3.22.

Corollary 3.26. Suppose ϕ : (M//αG,C∞(M//αG)→(N//βH,C∞(N//βH))
is an isomorphism of reduced spaces and h ∈ C∞(N//βH)) a Hamiltonian as
in Lemma 3.25 above. Then
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• A point x ∈ N//βH,C∞(N//βH) is a stable equilibrium of h if and only
if ϕ−1(x) is a stable equilibrium of ϕ∗h.

• A point x ∈ N//βH,C∞(N//βH) is an unstable equilibrium of h if and
only if ϕ−1(x) is an unstable equilibrium of ϕ∗h.

The final bit of theory that we’ll need to analyze the stability of tops is a
theorem Montaldi [17]:

Theorem 3.27. Let (M,ω) be a symplectic manifold with a Hamiltonian
action of a compact Lie group G and corresponding equivariant moment
map μ : M → g∗. Let h ∈ C∞(M)G be an invariant Hamiltonian, α ∈ g∗,
pr : μ−1(α) → M//αG the quotient map and hα ∈ C∞(M//αG) the reduced
Hamiltonian (so pr∗hα = h|μ−1(α).) Suppose x ∈ μ−1(α) is a point so that
pr(x) is a local minimum or a local maximum of hα. Then x is relative equi-
librium of h which is a G-stable in M .

We end the section with a parenthetic remark on differential spaces and
singular reduction. The remark will play no role in the rest of the paper.

Remark 3.28. The differential space approach to singular reduction is not
a complete answer for the following annoying reason.

By a theorem of Dubuc and Kock [6] for any C∞-ring A there exists a
module of C∞-Kähler differentials Ω1

A together with a universal derivation
dA : A → Ω1

A: for any A-module M and any derivation X : A → M
there exists a unique A-module map ϕX : Ω1

A → M so that X = ϕX ◦
dA. The universal derivation dA is functorial in A. One can further mimic
Grothendieck’s algebraic de Rham complex and produce an C∞-algebraic de
Rham complex

Ω•
A

d−→ Ω•+1
A ,

see [11]. Moreover if A = C∞(M) for a manifold M then Ω•
C∞(M) is the

usual de Rham complex (this is not obvious). Since the complex Ω•
A is also

functorial in A, for any closed subset Z of a manifold M the the surjective
restriction map

C∞(M) → C∞(Z), f 
→ f |Z
extends to a surjective map Ω(M)• → Ω•

C∞(Z) of differential graded algebras.
In particular if μ : (M,ω) → g∗ is an equivariant moment map for a Hamilto-
nian action of a Lie group G on a symplectic manifold then the restriction of
the 2-form ω to the zero level set μ−1(0) makes perfect sense: ω|Z is a closed
2-form in the C∞-algebraic de Rham complex of the C∞-ring C∞(μ−1(0)).
This is true regardless of whether or not μ−1(0) is a manifold. Furthermore,



2054 Eugene Lerman

as we have seen, the quotient μ−1(0)/G is a C∞-ring and the quotient map
π : μ−1(0) → μ−1(0)/G is a smooth map of differential spaces. The trouble
comes from the fact that unlike the regular case the 2-form ω|μ−1(0) need
not descend to a 2-form on the quotient μ−1(0)/G: there need not exist any
2-form σ ∈ Ω2

C∞(μ−1(0)/G) with

π∗σ = ω|μ−1(0).

Here is a simple example: let (M,ω) = (R2, dx ∧ dy), G = {±1} acting
by (−1) · (x, y) = (−x,−y). Then the moment map μ is identically 0 and
μ−1(0)/G = R

2/{±1}. The C∞-ring of smooth functions on the quotient
“is” the ring of invariant functions C∞(R2){±1}. With this identification the
pullback π∗ : C∞(R2/G) → C∞(R2) is simply the inclusion C∞(R2){±1} ↪→
C∞(R2). By a theorem of G. Schwarz the C∞-ring of invariant functions is
generated by x2, xy and y2. Consequently the module of 1-forms Ω1

C∞(R2){±1}

on the quotient is generated by xdx, ydy and xdy + ydx. It follows that there
is no 2-form σ ∈ Ω2

C∞(R2){±1}) with π∗σ = dx ∧ dy.
There are several ways to fix the problem. For example on can replace the

“coarse” quotient R
2/G by the stack quotient [R2/G]. Then the G-invariant

2-form dx ∧ dy does descend to a closed 2-form on the stack quotient.
The example suggests to me that in order to fully understand singular

symplectic quotients one would need understand Hamiltonian dynamics on
stacks. For Deling-Mumford stacks over a site of manifolds this has been done.
But one would need to consider Artin stacks over a site of differential spaces
or maybe over a site of C∞-affine schemes.

4. Reduction to one variable calculus

We are now back to studying the family (2.4) of SO(2)-symmetric Hamil-
tonian systems on the cotangent bundle T ∗S2 of the 2-sphere. Since we are
interested in the behavior of straight up tops, we may restrict our attention
to the upper hemisphere

S2
+ := {(q1, q2, q3) ∈ R

3 | q3 > 0}.

The projection

(4.1) ψ : S2
+ → R

2, ψ(q) = (q1, q2)

defines a coordinate chart on S2. Denote the corresponding coordinates on
T ∗S2

+ by (x, y, px, py). In these coordinates the symplectic form ωr is given
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by
ωr = dx ∧ dpx + dy ∧ dpy + r√

1 − x2 − y2
dx ∧ dy,

the SO(2) moment map μr is

μr(x, y, px, py) = xpy − ypx + r
√

1 − x2 − y2,

the metric g is given by the matrix

g =
(

1 + x2

z2
xy
z2

xy
z2 1 + y2

z2

)

and the dual metric g∗ by the inverse matrix

g−1 = z2
(

1 + y2

z2 −xy
z2

−xy
z2 1 + x2

z2

)
.

Here and below
z =

√
1 − x2 − y2.

Consequently the Hamiltonian h of (2.4) in these coordinates is

h(x, y, px, py)= 1
2
(
(1−x2)p2

x−2xypxpy+(1 − y2)p2
y

)
+V (x, y,

√
1 − x2 − y2).

Equivalently the diffeomorphism

ϕ : D2 = {(x, y) ∈ R
2 | x2+y2 < 1} → S2

+, ϕ(x, y) = (x, y,
√

1 − x2 − y2)

induces a diffeomorphism Φ : T ∗D2 → T ∗S2
+ of the cotangent bundles,

Φ∗ωr = dx ∧ dpx + dy ∧ dpy + r√
1 − x2 − y2

dx ∧ dy

while
(μr ◦ Φ) (x, y, px, py) = xpy − ypx + r

√
1 − x2 − y2

and

h ◦ Φ (x, y, px, py)(4.2)

= 1
2
(
(1 − x2)p2

x − 2xypxpy + (1 − y2)p2
y

)
+ V (x, y,

√
1 − x2 − y2).
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Lemma 4.3. Consider the map f : T ∗(−1, 1) → D2 × R
2 ⊂ R

4 given by

f(u, pu) = (u, 0, pu,
r

u
(1 −

√
1 − u2))

for u �= 0 and by f(0, pu) = (0, 0, pu, 0). Then f is C∞, f(T ∗(−1, 1)) ⊂ μ−1
r (r),

and f induces an isomorphism

f∗ : C∞(T ∗S2
+)SO(2)|μ−1

r (r) → C∞(T ∗(−1, 1))Z/2

of C∞-rings and of Poisson algebras. Here and below Z/2 = {±1} acts on
(−1, 1) by multiplication and by the lifted action on T ∗(−1, 1). Finally the
smooth function f : T ∗(−1, 1) → μ−1

r (r) induces an isomorphism

(4.4) f̄ : T ∗(−1, 1)/(Z/2) → μ−1
r (r)/SO(2) = T ∗S2

+//rSO(2)

of symplectic reduced spaces. (We view T ∗(−1, 1)/(Z/2) as the reduction at
zero of the cotangent bundle (T ∗(−1, 1), ωT ∗(−1,1)) by the lifted action of Z/2.)

Proof. Since
√

1 + x is analytic for |x| < 1 and since
√

1 + x = 1+ 1
2x+h.o.t.,

the function u 
→ 1−
√

1−u2

u is analytic for |u| < 1. Hence f is C∞.
Given (x, y, px, py) ∈ T ∗S2

+ there is A ∈ SO(2) so that A · (x, y, px, py) =
(x′, 0, p′x, p′y) for some x′, p′x, p′y with x′ unique up to sign. Also if (x, y, px, py) ∈
μ−1
r (r) and y = 0 then xpy + r

√
1 − x2 = r hence py = r 1−

√
1−x2

x . It follows
that f(T ∗(−1, 1)) ⊂ μ−1

r (r) and that the SO(2) orbits in μ−1
r (r)�{(0, 0, 0, 0)}

intersect the image of f in exactly two points. Hence the composite map
π ◦ f : T ∗(−1, 1) → μ−1

r (r)/SO(2) (where π : μ−1
r (r) → μ−1

r (r)/SO(2) is
the orbit map) descends to a continuous bijection f̄ : T ∗(−1, 1)/(Z/2) →
μ−1
r (r)/SO(2).

Since for any h ∈ C∞(T ∗S2
+)SO(2) the pullback f∗h ∈ C∞(T ∗(−1, 1))Z/2

the map f̄ is a map of differential spaces. Since for any (u, pu) ∈ T ∗(−1, 1)

f((Z/2) · (u, pu)) = (SO(2) · f(u, pu)) ∩ μ−1
r (r)

the pullback map f∗ : C∞(T ∗S2
+)SO(2)|μ−1

r (r) → C∞(T ∗(−1, 1))Z/2 is injective.
It remains to prove that f∗ is bijective and preserves the Poisson brackets.

The preservation of brackets follows from the fact that

f∗
(
dx ∧ dpx + dy ∧ dpy + r√

1 − x2 − y2
dx ∧ dy

)
= du ∧ dpu

and (3.0.iii).
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We now argue that f∗ : C∞(T ∗D2)SO(2) → C∞(T ∗(−1, 1))Z/2 is onto.
Thanks to Theorem 1 of [20] we know that for a representation G → GL(V )
of a compact Lie group on a finite dimensional real vector space the C∞-
ring C∞(V )G of invariant functions is finitely generated: there is k > 0 and
σ1, . . . , σk ∈ C∞(V )G so that for any a ∈ C∞(V )G there is a smooth function
f ∈ C∞(Rn) with

a = fC∞(V )G(σ1, . . . , σk) = f ◦ (σ1, . . . , σk).

Moreover the generators may be taken to be the generators of ring of invariant
polynomials R[V ]G on V . For the lift of the standard action of SO(2) on
R

2 to T ∗
R

2 = R
2 × R

2 the C∞-ring C∞(T ∗
R

2)SO(2) is generated by four
polynomials:

x2 + y2, p2
x + p2

y, xpx + ypy, xpy − ypx.

For the action of Z/2 on T ∗R = R
2 the C∞-ring C∞(T ∗

R)Z/2 is generated
by the three polynomials:

u2, p2
u, upu.

Observe that u2 = f∗(x2 + y2), upu = f∗(xpx + ypy) while f∗(xpy − ypx) =
r(1 −

√
1 − u2). Hence

p2
u = f∗

(
(p2

x + p2
y) − (xpy − ypx)2(x2 + y2)

)
.

It follows that

C∞(T ∗
R)Z/2

∣∣∣
T ∗(−1,1)

= f∗
(
C∞(T ∗

R
2)SO(2)

∣∣∣
μ−1
r (r)

)
.

This doesn’t quite prove surjectivity of f∗ : C∞(T ∗D2)SO(2) →
C∞(T ∗(−1, 1))Z/2 since C∞(T ∗(−1, 1))Z/2 is bigger than C∞(T ∗

R)Z/2
∣∣∣
T ∗(−1,1)

.
On the other hand, since T ∗(−1, 1) is open in T ∗

R the Localization Theorem
of Muñoz Díaz and Ortega [18] (see also [19, p. 28]) implies that given a
function k ∈ C∞(T ∗(−1, 1))Z/2 there exist g, h ∈ C∞(T ∗

R) so that
(
h|T ∗(−1,1)

)
k = g|T ∗(−1,1)

and h|T ∗(−1,1) is invertible in C∞(T ∗(−1, 1)). By averaging over Z/2 if neces-
sary we may assume that g and h are in C∞(T ∗

R)Z2 . This implies that there
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are g̃, h̃ ∈ C∞(T ∗
R

2)SO(2)|μ−1
r (r) with

h|T ∗(−1,1) = f∗h̃, g|T ∗(−1,1) = f∗g̃.

Therefore

k =
g|T ∗(−1,1)

h|T ∗(−1,1)
= f∗

(
g̃

h̃

)

and we are done.

Lemma 4.5. If u ∈ (−1, 1) is a critical point of the function

Ur(u) = r2

2

(
1 −

√
1 − u2

u

)2

+ V (u, 0,
√

1 − u2)

(where r ∈ R is a parameter) then ((u, 0), (0, r 1−
√

1−u2

u )) ∈ T ∗S2
+ ⊆ T ∗S2

is a relative equilibrium of the SO(2)-invariant Hamiltonian system (2.4)
(where we used the coordinates (4.1) on the upper hemisphere and the induced
coordinates on its cotangent bundle).

Moreover if u is a local minimum of Ur(u) then the corresponding relative
equilibrium is relatively stable and if u is a local maximum of Ur(u) then the
corresponding relative equilibrium is unstable.

Proof. It follows from Corollary 3.26 that in order to analyze the stability of
the relative equilibria of (2.4) near the straight up position it is enough to
analyze relative equilibria of

(T ∗(−1, 1)/(Z/2), hr := f∗(h ◦ Φ) ∈ C∞(T ∗(−1, 1))Z/2),

where h◦Φ ∈ C∞(T ∗D2)SO(2) is given by (4.2). That is, it’s enough to analyze
the critical points of the function hr on the manifold T ∗(−1, 1) (and remember
not to double count since we want to analyze the equilibria on the quotient
T ∗(−1, 1)/(Z/2)). Since

hr(u, pu) = f∗(h ◦ Φ) (u, pu)(4.6)

= 1
2

⎛
⎝(1 − u2)p2

u + r2
(

1 −
√

1 − u2

u

)2
⎞
⎠ + V (u, 0,

√
1 − u2)

= 1
2(1 − u2)p2

u + r2

2

(
1 −

√
1 − u2

u

)2

+ V (u, 0,
√

1 − u2)



Stability and bifurcations of symmetric tops 2059

the critical points of hr are of the form (u, 0) where u is a critical point of the
effective potential

Ur(u) = r2

2

(
1 −

√
1 − u2

u

)2

+ V (u, 0,
√

1 − u2).

By Montaldi’s theorem (Theorem 3.27) any extremal points of the Hamilto-
nian hr correspond to stable relative equilibria of the system (2.4) and any
unstable equilibria of hr correspond to unstable relative equilibria of (2.2).

If u is a local minimum of Ur then (u, 0) is a minimum of hr, hence
corresponds to a stable relative equilibrium of (2.4). On the other hand if u
is a local maximum of Ur, then (u, 0) is a saddle point of hr and therefore
corresponds to an unstable relative equilibrium of (2.4).

Remark 4.7. Note that, as we observed in the introduction, there is a unique
function W ∈ C∞([0, 1)) so that

W (u2) = V (u, 0,
√

1 − u2).

Therefore the effective potential Ur(u) that we need to analyze is of the form

(4.8) Ur(u) = r2

2

(
1 −

√
1 − u2

u

)2

+ W (u2)

for some function W ∈ C∞([0, 1)) that depends on the top we are studying
(cf. the introduction). We analyze (4.8) in the next section.

5. Analysis of critical points of
Ur(u) = r2

2 (1−
√

1−u2

u
)2 + W (u2) and a proof of

Theorem 1.1

Lemma 5.1. Let W ∈ C∞([0, 1)) be a smooth function and Ur ∈ C∞((−1, 1))
be given by

Ur(u) = r2

2

(
1 −

√
1 − u2

u

)2

+ W (u2).

Without loss of generality assume that 0 ≤ r.

5.1.i. If W ′(0) > 0 then u = 0 is a local minimum of Ur for all r and there
are no other critical points of Ur near u = 0.
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5.1.ii. Suppose W ′(0)<0 and W ′′(0)>W ′(0). Then for r > r0 :=
√
−8W ′(0)

the point u = 0 is a local minimum of Ur(0) and there are no other
critical points of Ur(u) for |u| � 1. For r < r0 the point u = 0
is a local maximum of the function Ur(u) and there is a continuous
function u(r) defined for r < r0 and |r − r0| � 1 so that u = u(r) is
a local minimum of Ur(u):

u

r0

r

5.1.iii. Suppose W ′(0)<0 and W ′′(0)<W ′(0). Then for r < r0 :=
√
−8W ′(0)

the point u = 0 is a local maximum of Ur(u). For r > r0 the point
u = 0 is a local minumum and there is a continuous function u(r)
defined for r > r0 and |r − r0| � 1 so that u = u(r) is a local
maximum of Ur(u):

u

r0

r

Proof. The function

v(u) =
{

1−
√

1−u2

u if u �= 0
0 if u = 0

is analytic for |u| < 0 and is invertible with the inverse k(v) = 2v
1+v2 . Then

Ur(k(v)) = r2

2 v2 + W (k(v)2) = r2

2 v2 + W

( 4v2

(1 + v2)2
)
.

Let

f(s) = W

( 4s
(1 + s)2

)
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and

S(r, v) := Ur(k(v)) = r2

2 v2 + f(v2).

Then
f ′(0) = 4W ′(0) and f ′′(0) = 16(W ′′(0) −W ′(0)).

Now
∂vS = r2v + 2vf ′(v2) = v(r2 + 2f ′(v2))

and
∂2
vS = r2 + 2f ′(v2) + 4v2f ′′(v2).

Suppose that f ′(0) > 0 Then r2 + 2f ′(v2) > 0 for all |v| � 1 and

∂2
vS(r, 0) = r2 + 2f ′(0) > 0.

It follows that v = 0 is an isolated local minimum of Sr(v) = S(r, v) for all
r > 0. Therefore if W ′(0) > 0 then u = 0 is an isolated local minimum of Ur

for all r. This proves (5.1.i).

Suppose next that f ′(0) < 0 Then for r > r0 =
√
−2f ′(0) (=

√
−8W ′(0))

∂2
vS(r, 0) = r2 + 2f ′(0) > 0

and r < r0

∂2
vS(r, 0) < 0.

It follows that u = 0 is a local minimum of Ur(u) for r > r0 and a local
maximum for r < r0. We now break up the case f ′(0) < 0 into two generic
subcases.

Suppose that f ′′(0) > 0 Then f ′(t) is an increasing function of t for |t| � 1.
Consequently f ′(t) is invertible on a neighborhood of 0 and (f ′)−1 is also an
increasing function in a small neighborhood of f ′(0) = −r2

0/2. It follows that

since − r2/2 < −r2
0/2 for r > r0 ≥ 0, (f ′)−1(−r2/2) < (f ′)−1(−r2

0/2)=0,
and for 0 ≤ r < r0 (f ′)−1(−r2/2) > (f ′)−1(−r2

0/2)=0.

Hence for r > r0 the equation

v2 = (f ′)−1(−r2/2)
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has no solutions. Consequently

∂vS(v, r) = v(r2 + 2f ′(v2)) = 0

only if v = 0. On the other hand if r < r0 then

v(r) =
(
(f ′)−1(−r2/2)

)1/2

solves
r2 + 2f ′(v2) = 0.

And then

(∂2
vS)(r, v(r)) = r2 + 2f ′(v(r)2) + 4v(r)2f ′′(v(r)2) = 4v(r)2f ′′(v(r)2).

Since f ′′(v(r0)2) = f ′′(0) > 0 by our assumption and since the function v(r)
is continuous

f ′′(v(r)2) > 0
for r < r0 and r0 − r � 1. Hence v(r) is a local minimum of Sr(v) = S(r, v).
It follows that u(r) = 2v(r)

1+v(r)2 is a local minimum of Ur if W ′′(0) > W ′(0).
This proves (5.1.ii).

Suppose that f ′′(0) < 0 (which corresponds to the case of W ′′(0) < W ′(0))
Then f ′(t) is a decreasing function for t small. Consequently f ′ is invertible
on a neighborhood of 0 and (f ′)−1 is also a decreasing function in a small
neighborhood of f ′(0) = −r2

0/2. Then,

since − r2/2 < −r2
0/2 for r > r0 ≥ 0, (f ′)−1(−r2/2) > (f ′)−1(−r2

0/2)=0,
and for r < r0 (f ′)−1(−r2/2) < (f ′)−1(−r2

0/2)=0.

Hence for r < r0 the equation

v2 = (f ′)−1(−r2/2)

has no solutions. Consequently

∂vS(v, r) = v(r2 + 2f ′(v2)) = 0

only if v = 0. On the other hand if r < r0 then

v(r) =
(
(f ′)−1(−r2/2)

)1/2
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solves
r2 + 2f ′(v2) = 0.

And then
(∂2

vS)(r, v(r)) = 4v(r)2f ′′(v(r)2).

Since f ′′(v(r0)2) = f ′′(0) > 0 by our assumption,

f ′′(v(r)2) > 0

for r > r0 and r−r0 � 1. Hence v(r) is a local maximum of Sr(v) = S(r, v). It
follows that u(r) = 2v(r)

1+v(r)2 is a local maximum of Ur. This proves (5.1.iii).

Proof of Theorem 1.1. By Lemma 4.5 local minima of the function Ur corre-
spond to relatively stable relative equilibria of the system (1.2) and local max-
ima to unstable relative equilibria of (1.2). By (5.1.i) if W ′(0) > 0 the u = 0 is
a local minimum of Ur for all r. Hence ((u, 0), (0, 0)) ∈ T ∗D2 	 T ∗S2

+ is a sta-
ble relative equilibrium of (1.2) for all values of r. Similarly (5.1.ii) translates
into case (ii) of the theorem and (5.1.iii) translates into case (iii).
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